The CMS High Level Trigger

Leonard Apanasevich

University of Illinois at Chicago apana@fnal.gov

Introduction

- Introduction to the CMS trigger system
- Goals of the High Level Trigger "Exercise"
- Development of the Trigger menu

 Level-1 and HLT Trigger paths and rates
- CPU performance of the HLT
 - Sensitivity to the input conditions
- Discussion of some of the associated
 uncertainties

Trigger Challenges

- Filter out the "interesting" interactions from the "uninteresting" ones
- Input Rate:
 - ~10⁹ interactions/second at design luminosity $(L = 10^{34} \text{ cm}^{-2}\text{s}^{-1})$
- Output rate:

Ultimately limited by speed a which we can write events to tape (~150 Hz)

(proton - proton)

ь

Trigger Architecture

• 2-tiered trigger design

• Possible because of large, fast switching network

CHEP 2007

The Level-1 Trigger

- Reduce data rate from 40 MHz to 50 kHz while keeping the interesting physics events
 - Custom electronic boards and chips
- Selects muons, electrons, photons, jets
 - E_T and location in detector
- Also Missing E_T , Total E_T , H_T , and jet counts
- Total decision latency: 3.2 μs

High Level Trigger (HLT)

- High-Level triggers reduce rate from 50 kHz to O(150 Hz)
- HLT does event reconstruction "on demand" seeded by the L1 objects found, using full detector resolution
- Algorithms are essentially offline quality but optimized for fast performance

HLT Algorithm Design

- Each HLT trigger path is a sequence of modules
- Processing of the trigger path stops once a module returns false
- Reconstruction time is significantly improved by doing regional dataunpacking and local reconstruction across HLT
- All algorithms (except for Jets) regional
 - Seeded by previous levels (L1, L2, L2.5)

"Local": using one sub-detector only "Regional": using small (η, ϕ) region

CHEP 2007

Determine CPU-performance for early physics-run Trigger Menu

- Driven by need to purchase Filter Farm at end of 2007
- Design for L = 10^{32} cm⁻² s⁻¹

– Maximum luminosity in 2008

 Assuming an L1 output rate of 50 kHz and a 2000 CPU Filter Farm:

HLT CPU time budget ~ 40ms/event

HLT Timing Considerations

HLT Timing is influenced by:

- Trigger menu (L1T & HLT)
 - Determined by physics priorities
- Input L1Trigger rate
 - Limited by bandwidth
 - Parameters of various L1T algorithms, e.g., H/E
- HLT algorithms and configuration
 - Standard trigger paths at HLT seeded by L1 trigger bits
 - Order of modules and filters in a path
 - Parameters of the modules and filters

Level-1 Trigger Menu

- L1 Menu optimized to fit within the L1 bandwidth
 - Allow a safety factor of 3 to account for uncertainties in the trigger rate determination, e.g. underestimate of input cross sections, poor beam conditions, detector performance, etc.

➤17 kHz instead of nominal 50 kHz allowed by DAQ

- All L1 bits matched to HLT paths to help ensure proper estimation of HLT processing times
- Realistic menu including double and mixed triggers for specific physics channels

L1 Trigger Menu: Single and Double

L1 Trigger	Threshold (GeV)	Prescale	Rate (k11z)
A SingleMus	3	1000	0.01 + 0.00
A SingleMu5	5	1000	0.00 1 0.00
A Sing LoMu7	7	1	1.11 ± 0.04
∆ #ång1≪Mu10	10	1	0.47 .1. 0.03
A SingleMul4	14	1	-0.18 ± 0.02
A SingleMu20	20	1.	0.09 ± 0.01
A.SingleMu25	25	1	0.06 1 0.01
A dingleTse805	5	10000	0.00 .1: 0.00
A SingleiseRG8	8	1000	0.01 .1. 0.00
A. Sting Le I solidi, 0	10	100	0.04 ± 0.01
A.B.Ingle DoBGL8	12	1	2.47 ± 0.06
A.S.ingleTsoEGL5	15	1	1.10 1 0.04
A.S.ing.LoIzoFG20	20	1	0.32 1: 0.02
A.ShugleTroEG25	25	1	0.14 .1. 0.01
A SingleEC5	5	10000	0.00 ± 0.00
A SingleE68	8	1000	0.01 ± 0.00
A.SingleEG10	10	100	0.04 + 0.01
A.GingleRG12	12	100	0.03 .1: 0.01
A 33 ngl eBC15	15	1	1.51 ± 0.05
A SingleEG20	20	1	0.52 ± 0.03
A SingleBC25	25	1	0.25 ± 0.02
A.Singledot70	70	100	0.02 ± 0.01
A SingleJett100	100	1	0.43 1: 0.02
A Single-Tel.150	150	1	0.07.1.0.01
Continued on			

1.1 Trigger	Threshold (GeV)	Prescale	Rate (kHz)
A.Singledet.:00	200	1	-0.02 ± 0.01
A SingleTaudet40	40	1000	0.02 ± 0.01
A SingleTaudot80	80	1	-0.68 ± 0.03
A SingleTauJeL100	100	1	0.20 1: 0.02
A IFTER90	250	1	2.56 1.0.06
A 1020300	300	1	0.65 ± 0.03
A.1PTT400	400	1	0.08 ± 0.01
A.1011500	500	1	0.02 ± 0.00
A JETM2.0	20	10000	0.00 1: 0.00
A ETM (0		1	5.69 (1.0.09)
A .E10M4.0	40	1	0.40 ± 0.02
A ETM50	50	1	0.05 ± 0.01
A ETM60	60	1	0.01 1 0.00
A DoubleMu3	3	1	0.28 1: 0.02
A Doublet soles	8	1	0.28.1.0.02
A Double Leoker 0	10	1	0.08 ± 0.01
A DoubleEG5	5	1.0000	0.0 ± 0.00
A. DoubleEG10	10	1	0.19 1 0.02
A DoubleBG15	15	1	0.05 .1: 0.01
A.Doubledet70	70	1	0.58 .1. 0.03
A Doub Ledet 100	1.00	1	-0.11 ± 0.01
AlboubleTauJet20	20	1000	-0.02 ± 0.01
A found of a notate 30	30	100	0.08 ± 0.01
A DoubleTaudet40	40	1	2.36 1:0.06

L1TEmulator Developers +

Werner Sun, Sridharda Dasu, Pedram Bargassa CHEP 2007 11

3 September 2007

L1 Trigger Menu: Mixed

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		l I		
A.Mu5_IsoEG105,101 0.04 ± 0.01 A.Mu3_EG123,121 0.09 ± 0.01 A.Mu3_Jet153,1520 0.30 ± 0.02 A.Mu5_Jet155,151 1.62 ± 0.05 A.Mu3_Jet703,701 0.10 ± 0.01 A.Mu5_Jet205,201 1.18 ± 0.04 A.Mu5_TauJet205,201 0.66 ± 0.03 A.Mu5_TauJet305,301 0.38 ± 0.02 A.IsoEG10_Jet1510,1520 0.15 ± 0.01 A.IsoEG10_Jet2010,301 1.95 ± 0.05 A.IsoEG10_Jet2010,201 3.04 ± 0.06 A.IsoEG10_Jet2010,201 1.95 ± 0.05 A.IsoEG10_Jet3010,301 1.33 ± 0.04 A.IsoEG10_TauJet2010,201 1.95 ± 0.05 A.IsoEG10_TauJet3010,301 1.33 ± 0.04 A.TauJet30_ETM3030,301 1.96 ± 0.02 A.TauJet30_ETM4030,401 0.26 ± 0.02 A.TripleMu331 0.01 ± 0.00 A_QuadJet30301 0.58 ± 0.03	A_Mu3_IsoEG5	3,5	1	0.95 ± 0.04
A.Mu3_EG12 $3,12$ 1 0.09 ± 0.01 A.Mu3_Jet15 $3,15$ 20 0.30 ± 0.02 A.Mu5_Jet15 $5,15$ 1 1.62 ± 0.05 A.Mu3_Jet70 $3,70$ 1 0.10 ± 0.01 A.Mu5_Jet20 $5,20$ 1 1.18 ± 0.04 A.Mu5_TauJet20 $5,20$ 1 0.66 ± 0.03 A.Mu5_TauJet30 $5,30$ 1 0.38 ± 0.02 A.IsoEG10_Jet15 $10,15$ 20 0.15 ± 0.01 A.IsoEG10_Jet30 $10,30$ 1 1.95 ± 0.05 A.IsoEG10_Jet20 $10,20$ 1 3.04 ± 0.06 A.IsoEG10_Jet20 $10,20$ 1 1.95 ± 0.05 A.IsoEG10_Jet20 $10,20$ 1 1.95 ± 0.05 A.IsoEG10_Jet30 $10,30$ 1 1.95 ± 0.05 A.IsoEG10_Jet30 $10,30$ 1 1.95 ± 0.05 A.IsoEG10_TauJet20 $10,20$ 1 1.95 ± 0.05 A.IsoEG10_TauJet30 $10,30$ 1 1.33 ± 0.04 A.TauJet30_ETM30 $30,30$ 1 1.96 ± 0.02 A.TripleMu331 0.01 ± 0.00 A.QuadJet30 30 1 0.58 ± 0.03	A_Mu5_IsoEG10	5,10	1	0.04 ± 0.01
A.Mu3_Jet153,1520 0.30 ± 0.02 A.Mu5_Jet155,151 1.62 ± 0.05 A.Mu3_Jet703,701 0.10 ± 0.01 A.Mu5_Jet205,201 1.18 ± 0.04 A.Mu5_TauJet205,201 0.66 ± 0.03 A.Mu5_TauJet305,301 0.38 ± 0.02 A.IsoEG10_Jet1510,1520 0.15 ± 0.01 A.IsoEG10_Jet3010,301 1.95 ± 0.05 A.IsoEG10_Jet2010,201 3.04 ± 0.06 A.IsoEG10_Jet7010,701 0.26 ± 0.02 A.IsoEG10_TauJet2010,201 1.95 ± 0.05 A.IsoEG10_TauJet3010,301 1.33 ± 0.04 A.IsoEG10_TauJet3010,301 1.06 ± 0.05 A.IsoEG10_TauJet3030,301 1.96 ± 0.05 A.IsoEG10_TauJet3030,301 0.26 ± 0.02 A.TauJet30_ETM30 $30,40$ 1 0.26 ± 0.02 A.TripleMu331 0.01 ± 0.00 A_QuadJet30301 0.58 ± 0.03	A_Mu3_EG12	3,12	1	0.09 ± 0.01
A.Mu5_Jet15 $5,15$ 1 1.62 ± 0.05 A.Mu3_Jet70 $3,70$ 1 0.10 ± 0.01 A.Mu5_Jet20 $5,20$ 1 1.18 ± 0.04 A.Mu5_TauJet20 $5,20$ 1 0.66 ± 0.03 A.Mu5_TauJet30 $5,30$ 1 0.38 ± 0.02 A.IsoEG10_Jet15 $10,15$ 20 0.15 ± 0.01 A.IsoEG10_Jet30 $10,30$ 1 1.95 ± 0.05 A.IsoEG10_Jet20 $10,20$ 1 3.04 ± 0.06 A.IsoEG10_Jet70 $10,70$ 1 0.26 ± 0.02 A.IsoEG10_TauJet20 $10,20$ 1 1.95 ± 0.05 A.IsoEG10_TauJet30 $10,30$ 1 1.95 ± 0.05 A.IsoEG10_TauJet30 $10,30$ 1 1.33 ± 0.04 A.TauJet30_ETM30 $30,30$ 1 1.96 ± 0.05 A.TauJet30_ETM40 $30,40$ 1 0.26 ± 0.02 A.TripleMu331 0.01 ± 0.00 A.QuadJet30 30 1 0.58 ± 0.03	A_Mu3_Jet15	3,15	20	0.30 ± 0.02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A_Mu5_Jet15	5,15	1	1.62 ± 0.05
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A_Mu3_Jet70	3,70	1	0.10 ± 0.01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A_Mu5_Jet20	5,20	1	1.18 ± 0.04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A_Mu5_TauJet20	5,20	1	0.66 ± 0.03
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A_Mu5_TauJet30	5,30	1	0.38 ± 0.02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A_IsoEG10_Jet15	10,15	20	0.15 ± 0.01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A_IsoEG10_Jet30	10,30	1	1.95 ± 0.05
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A_IsoEG10_Jet20	10,20	1	3.04 ± 0.06
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A_IsoEG10_Jet70	10,70	1	0.26 ± 0.02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A_IsoEG10_TauJet20	10,20	1	1.95 ± 0.05
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A_IsoEG10_TauJet30	10,30	1	1.33 ± 0.04
A_TauJet30_ETM40 30,40 1 0.26 ± 0.02 A_TripleMu3 3 1 0.01 ± 0.00 A_QuadJet30 30 1 0.58 ± 0.03 Continued on next page	A_TauJet30_ETM30	30,30	1	1.96 ± 0.05
$\begin{array}{ c c c c c c } \hline A_TripleMu3 & 3 & 1 & 0.01 \pm 0.00 \\ \hline A_QuadJet30 & 30 & 1 & 0.58 \pm 0.03 \\ \hline Continued on next page \dots \end{array}$	A_TauJet30_ETM40	30,40	1	0.26 ± 0.02
A_QuadJet30 30 1 0.58 ± 0.03 Continued on next page	A_TripleMu3	3	1	0.01 ± 0.00
Continued on next page	A_QuadJet30	30	1	0.58 ± 0.03
	Continued on			

L1 Trigger	Threshold (GeV)	Prescale	Rate (kHz)
A_MinBias_HTT10	10	large	0.40 ± 0.00
A_ZeroBias	0	large	0.40 ± 0.00
Total L1 Trigg	16.67 ± 0.15		

Table 9.1: Trigger table showing L1 rates at chosen thresholds for $\mathcal{L} = 10^{32}$ cm⁻² s⁻¹.

HLT Rates

HLT Menu

e, γ, τ + X

			11	Thresholds	HLT Rate	
		HLI path	LI condition	(GeV)	(Hz)	
	HI	Single Isolated e	AlSingleIsoEG11	15	17.3 ± 2.3	
	Single	Single Relaxed e	A_SingleE015	17	9.3 ± 1.3	Monica vazquez Acosta
нт	Single	Double Isolated e	AlDoubleIstEC8	10	0.2 ± 0.1	Marco Pieri,
1121	Double	Double Relaxed e	Alboxinle2010	12	0.9 ± 0.2	Alessio Ghezzi,
Sing	$J/_{2}$	Single Isolated γ	AlSingleIsoEG12	30	8.3 ± 0.7	,
Dout	1	Single Relaxed γ	AlSingleEGla	40	2.8 ± 0.2	
Dout	Υ	Double Isolated γ	ADoubleIsoZ05	(20,20)	0.6 ± 0.4	
Trip	7	Double Relaxed γ	AlbockleEG10	(20,20)	1.9 ± 0.5	
Qua	2	High $E_T e$	A_S1mg1+2314	80	0.5 ± 0.2	
Ę	Triple	High $E_T e$	AlSingleE315	200	0.1 ± 0.0	
Acopl T	Same-si	Lifetime b-tag 1-jet	· · · · · · · · · · · · · · · · · · ·	180	1.5 ± 0.2	lan Tomalin
meoph E	μ-base Pre	Lifetime b-tag 2-jets	\$	120	2.4 ± 0.3	
Acopl. Sinş	hassas	Lifetime b-tag 3-jets	Ŷ	70	1.9 ± 0.1	
Acopl. Dou	µ-basec	Lifetime b-tag 4-jets	÷	40	2.1 ± 0.1	
Single-J	μ -basec	Lifetime b -tag H_T	· · ·	470	2.9 ± 0.1	
Double-		Charged Higgs 7	AlSingleTanJetic	15	0.2 ± 0.0	Simone Gennai
Triple-J	μ -basec	$\tau + \vec{E}_T$	AlfauJet30LETIM30	15	1.8 ± 0.2	
Quad-J	haee	Double τ (Calo+Pixel)	AlloubleTauJet40	15	5.0 ± 0.7	
VBF Doub	μ-υασο	c + b-jet	AliscEG101Jet20	(10, 35)	0.1 ± 0.0	Greg Landsberg, Duong
H_T -	$b \rightarrow$	e + jet	A_IsoEG10_Jet30	(12, 40)	11.9 ± 1.2	Nauven, Len Christofek,
SUSY 2	11	$e + \tau$	AllsoEG10LTatJet20	(12, 20)	0.1 ± 0.2	Nadia Eram
Single Jet [$\frac{\mu}{\mu + \mu}$	Prescaled e/γ	AlSingleIsoEG5	_	3.0 ± 0.0	
Single Jet I	μ	Prescaled μ	See Tabl	le 2.6	3.0 ± 0.0	Marta Felcini
Single Jet P	3	Min.Bias	A_X1xBias_RTT10	_	0.5 ± 0.0	
	$e + \mu$	Pixel Min.Bias	AlferoBias	_	0.5 ± 0.0	-
2.50	1	Zero Bias	A.Cerchas	_	1.0 ± 0.0	-
3 56			Total HLT rate (Hz)		150 ± 4.9	14

HLT Processing Times

- Average time needed to run full Trigger Menu on L1accepted events: 43 ms/event
 - Core 2 5160 Xeon processor running at 3.0 GHz
- CPU times strongly dependent
 on HLT input
- "Tails" have a significant impact on the average time
 - Will eliminate with time-out mechanism

Time Plot: Tulika & Simone

HLT Processing Times (2)

- Calculate ave. processing times for different QCD, W/Z, µ-enriched samples
 - Weight by combined cross-section and L1 selection efficiency, add them up
- Compared weighted sum with result obtained on L1-accepted min. bias events

Sample	L1 efficiency (%)	L1 eff. $\times \sigma$ (pb)	Average time (ms)
Minimum bias	0.19 ± 0.01	$(1.50 \pm 0.09) \times 10^8$	42.7
QCD $p_{\mathrm{T}} \in [0, 15]$ GeV/c	0.08 ± 0.01	$(4.36 \pm 0.49) \times 10^7$	31
QCD $\vec{p}_{\mathrm{T}} \in [15, 20] \mathrm{GeV/c}$	2.08 ± 0.11	$(3.04 \pm 0.17) \times 10^7$	36
QCD $p_{\mathrm{T}} \in [20, 30] \mathrm{GeV/c}$	5.75 ± 0.18	$(3.64 \pm 0.11) \times 10^7$	40
$ ext{QCD} \ p_{ ext{T}} \in [30, 50] ext{GeV/c}$	21.70 ± 0.41	$(3.54 \pm 0.07) \times 10^7$	47
$ ext{QCD} \ p_{ ext{T}} \in [50, 80] \ ext{GeV/c}$	63.36 ± 0.84	$(1.37 \pm 0.02) \times 10^7$	53
QCD $p_{\mathrm{T}} \in [80, 120] \mathrm{GeV/c}$	95.96 ± 1.23	$(2.96 \pm 0.04) \times 10^{6}$	73
QCD $p_{\rm T} \in [120, 170]$ GeV/c	99.87 ± 1.18	$(4.93 \pm 0.06) \times 10^{5}$	143
QCD $p_{\rm T} \in [170, 230] \text{GeV/c}$	100.00 ± 0.00	$(1.01 \pm 0.00) \times 10^{5}$.264
QCD $\vec{p}_{\rm T} \in [230,300]{\rm GeV/c}$	100.00 ± 0.00	$(2.45 \pm 0.00) \times 10^4$	385
$pp \rightarrow \mu X$	42.96 ± 0.37	$(1.03 \pm 0.01) \times 10^7$	74
$W \rightarrow e \nu$	93.18 ± 0.59	$(7.36 \pm 0.05) \times 10^{3}$	280
$W \rightarrow \mu \nu$	84.67 ± 0.80	$(8.29 \pm 0.08) \times 10^{3}$	123
$Z \rightarrow ee$	99.54 ± 0.67	$(8.16 \pm 0.05) \times 10^2$	739
$Z \rightarrow \mu \mu$	98.99 ± 1.20	$(7.82 \pm 0.09) \times 10^2$	184
Weighted sum of QCD	42.9 ± 5.6		

Tulika Bose

Table 8.4 Average processing wall-clock times for running the High-Level Trigger Menu at $\mathcal{L}=10^{32}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}$ on Level-1-accepted events at an idle Core 25160 Xeon 3.0 GHz machine.

3 September 2007

CHEP 2007

HLT Processing Times (3)

Time Plot: Tulika & Simone

CHEP 2007

Timing Improvements Since Early 2007

HLT CPU time budget ~ 40ms/event

- Early 2007: > 450 ms
 - HCAL: use zero-suppressed data (100 \rightarrow ~2-3 ms)
 - ECAL: optimize data-unpacking (200 \rightarrow ~15 ms)
 - EgammaHLT: regional reconstruction
- Last May:120-140 ms
 - MuonHLT: regional reconstruction, improved L2 muon propagator
 - Optimization of tau, b-jet algorithms: fast rejection earlier in path
 - Switch from Pentium IV/AMD to Core-2 machines (~35%)
 - Data cache (memory allocation) more important than clock speed
- Early June:70 ms
 - Faster siStrip unpacking code
 - Regional ECAL unpacking implemented for egamma, muonHLT
- Middle of June:43 ms

Try an alternate trigger table within the bandwidth restrictions of L1T to HLT (17 kHz)

- Motivated by increasing the W/Z efficiencies of the τ hadronic channels
 - L1 Single-tau: 80 \rightarrow 60 GeV; L1 Double-tau: 40 \rightarrow 35 GeV
 - eff(W): 10% →17% ; eff(H200): 15% →32% ; eff(H400): 28% →44%
 - Replace "MET" by "MET + HT" condition for jet triggers to balance L1
 - <T>: 43 ms \rightarrow 45.8 ms (min.bias),
 - : 45.2 ±3.4 ms (QCD/W/Z/µ mix)

Raise L1 thresholds to L = $2x10^{33}$ cm⁻² s⁻¹ menu from PTDRv2

- Contributions from high-P_T QCD bins become more relevant
- Assume average HLT processing time per sample remains ~same

- In reality, it will increase because of pile-up

- <T>: 45.2 ms \rightarrow 55.6 ±4.2 ms (QCD/W/Z/µ mix)
 - CPU-processing times still under control

Systematic Uncertainties

- Overall rate uncertainties are accounted for by the x3 safety factor. However, there are systematic effects to be considered
 - QCD background and b cross section uncertainties
 - pp \rightarrow eX is underestimated
- Noise, calibration and alignment contributions
 - Study assumes default noise, good calibration and perfect alignment
 - Reality will be different, especially at the startup
 - More energy in the detector longer it takes to process
- Calibration and other triggers not included yet
 - Adds to processing time

Summary

We made it to 43 ms!

- Thanks to all involved. The HLT Exercise was a CMS-wide effort.
- Physics and CPU performance consistent with the CMS physics program and resources
 - A realistic global trigger menu for early physics run conditions (L = 10^{32} cm⁻²s⁻¹) is in place
- The exercise is fully documented in a note submitted to LHCC: CERN-LHCC 2007-021, LHCC-G-134
 - "What is the CPU performance of the HLT?"
 - 56 pages, ~80 authors