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Introduction

We describe a method for global alignment with tracks that does
not require solving a large system of linear equations.

e The method is iterative, based on the Kalman filter equations.

e The alignment parameters are updated immediately after a
track is processed.

e The current knowledge about the alignment can be directly
used to improve the tracking.

e The update is not restricted to the modules crossed by the
track, but limited to modules with significant correlations to
the ones in the current track.

e In order to keep track of the correlations some bookkeeping is
required.

e The Kalman filter equations offer the possibility to use prior in-
formation abaout the alignment from mechanical or laser align-
ment, and it is easy to fix the position of reference modules. The
method is also highly suitable for alignment relative to another
detector.

‘ The algorithm \

e The observations m depend on the track parameters at and
the alignment parameters d; via the track model f:

m = f(xi,di) +€, cov(e)=V

e contains the effects of the observation error and of multiple
scattering. Emnergy loss is considered as deterministic and is
included in the track model. Its variance-covariance matrix V'
can be assumed to be known.

e For the purpose of the Kalman alignment algorithm, this track
model is linearized:

m=c+ Ad; + Bx; +¢

A = 6’m/8dt|d0, B = 8m/(‘9azt|w0
c = f(zo,dy) — Ady — Bz

e Fixpansion point dp: the nominal or the currently estimated
module alignment.

e [ixpansion point xg: result of a preliminary track fit.

e The Kalman filter requires a prediction @ of the track param-
eters, along with its variance-covariance matrix C, that has to
be stochastically independent of the observations in the track.

e The iterative update of the alignment parameters needs some
starting values. Mechanical and laser alignment can be used
for obtaining suitable starting values. Reference modules can
be fixed by giving them very small initial errors.

Case 1: An independent prediction of the track parameters ex-
ists. The update equations for the alignment parameters read:

AN

d=d+ K (m—c— Ad — Bx)

with the following gain matrix:
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K = DAT ( v +ADAT + BCBT)
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Case 2: No independent prediction of the track parameters ex-
ists. In this case, the prediction @ gets zero weight in order not
to bias the estimation. This is accomplished by multiplying C' by
a scale factor v and letting « tend to infinity:

G = lim ( V + ADAT ¢ aBCBT) -
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Vp=V +ADA"

Because of GB = 0 the update equation of the alignment pa-
rameters can be simplified to

d=d+DATG(m - c— Ad)

The update of the covariance matrix can be calculated by linear
error propagation:

AN

D= (I—DATGA) D (I—ATGAD) + DATGVGAD

Implementation and computational

complexity

An update of all alignment parameters is too slow for practical
purposes. There are two alternatives:

1. Update only the modules in the current track, neglecting all
correlations. This gives an unbiased estimate, but is suboptimal
because of the missing correlations.

2. Update the modules having significant correlations with the
modules in the current track. This method is nearly optimal.

but it has to be guaranteed that D is positive definite all the
time.

In order to keep track of the necessary updates, a list L; is attached
to each detector module ¢, containing the detector modules that
have significant correlations with .

1. Update the list L; for every ¢ € I (the set of modules crossed
by the current track).

2. Form the list L of all detector modules that are correlated with
the ones crossed by the current track: L = |J;c5 L;. The size

of L should be much smaller than V.

3. For all 7 € L compute: (DAT)j =D el D]-Z-A;-r. Each block
D j; is of size nj X nj, where n; = dim(d;).

4. Compute: ADAT = D icl A,(DAT),.

5. Compute: Vp =V + ADAL and G. All matrices involved

are of size m x m, where m = dim(m).
6. Compute: m’ = G (m —Cc— ) icl A,L-dz-).
7. For all 5 € L compute and store: J] =d; + (DAT)jm’.

After each track, only the correlations between the modules in the
list L = |J;es Lj are updated:

AN

T .
D, =D;+(DA");(GVpG - 2G)|(DA"))] Vj,ie L

The computational complexity of the parameter update is of the

order |L|-|I|, and the computational complexity of the update of
the covariance matrix is of the order |L|?. Restricting the size of

the lists L; is therefore of crucial importance.

Restricting the number of updated

modules

To determine which alignables have significant correlations and
should therefore be included into the list L; and become updated,
the following procedure is used:
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e Define a relation “~” between two different alignables ¢ and j:
1 ~ 9 <=1 and j have been crossed by the same track.

e Define the metrical distance d(i, j) on the basis of this relation:

Ifi ~14 ~ 19~ -+ ~ i, ~ 7 is the shortest chain
connecting ¢ to j, the distance is d(i,7) = n+ 1. In
particular, if ¢ ~ j, then d(7, 7) = 1. See Figure 1.

e [nclude j in the list L; only if d(7, 7) < dmax.

e Inflate the variance-covariance matrix V' to decouple metrically
more distant alignables:

V —-V+AV .1

Figures 2-4 demonstrate the effect of an increasing value of AV
on the correlations R;; = 0;;/0; - 0;:

e A small-scale setup of approximately 500 strip-modules was
aligned against a fixed reference system. Only the local coor-
dinate x (perpendicular to the strips) was considered.

e After processing 10,000 tracks, the absolute values of the cor-
relations between all alignables were histogrammed in depen-
dence on their metrical distance (shown here only up to d = 6).
The effect of decreasing correlations with increasing values of d
for larger AV can be clearly seen.

e In Figure 5, the corresponding results are shown. They are
almost identical for all runs in which the correlations were taken

into account, also for the case of truncation at dpax = 4. Only

when neglecting the correlations entirely, the achieved precision
suffers noticeably.

Figure 1: Schematic example of the metrical distance d(z, j).

Figure 2: vVAV =0 um

Figure 3: vVAV = 50 pm
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Figure 4: vAV = 100 ym

Figure 5: Final resolution.
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‘ A large-scale application \

The algorithm has been implemented within the CMS software
framework. To demonstrate its performance it was applied to
a large-scale setup, comprising about a third of all modules of
the CMS tracker. A standard PC was used for the calcula-
tions (2.2 GHz CPU, AMD Athlon 64 Processor 3500+, 1 GByte
RAM).

e All modules in the barrel region of the Tracker, i.e. the Pixel
Barrel (TPB), the Inner Barrel (TIB) and the Outer Barrel
(TOB), were misaligned by drawing from Gaussians with stan-
dard deviations according to the values given in Table 1.
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e A sample of 70.000 fully simulated tracks in the region |n| <
1.0, stemming from Z — p*p -decays, was used for align-
ment.

e Values of diax = 4 and VAV = 100 pum were used.

e Flach of the subsystems was aligned, using the other systems as
an external reference.

e The results for the TPB were applied for the alignment of the
TIB and the TOB.

e The results for the TIB were applied for the alignment of the
TOB.

e A total of 6125 modules was aligned: 587 TPB, 1654 TIB, 3884
TOB.

e The resulting placement uncertainties can be seen in Table 2.

e The computation times can be seen in Table 3. It shows the
total time Tiqt, the time spent in refitting the tracks (T ), up-
dating the metrics (Tinet), computing all derivatives and the
gain matrix (Teom), retrieving the parameters and their covari-
ance matrix before the update and storing them back after-
wards (75 /,), and finally the time needed for the algorithmic

update itself (Th,).
Table 1: Initial placement uncertainties.

x Y 4 Q 15} Y
] ] jpm] - [mrad]  [mrad]  [mrad]

TPB 100 100 100 0.5 0.5 0.5
TIB 200 200 200 2.0 2.0 2.0

TOB 100 100 100 1.0 1.0 1.0

Table 2: Remaining placement uncertainties.

Ax Ay Az A« AS A~y
] ] jpm]  [mrad]  |mrad]  [mrad]
TPB 18.6 26.6 27.9 - — 0.24
TIB 30.8 109.9* 149.7*F -~ — 0.56
TOB 23.8 77.9% - - = 0.30

* Double-sided modules only.

Table 3: Computing times.
Tot 1t Tinet Teom 1; /o T3 g
] | ] | 8] |

TPB 2837 250 10 390 966 1155

TIB 6314 2506 26 785 2353 2670
TOB 5305 260 62 o31 2395 1891




