
INFSO-RI-508833

Enabling Grids for E-sciencE

www.eu-egee.org

www.glite.org

Building a robust distributed

system: some lessons

from R-GMA

CHEP-07, Victoria, Canada, 3-7 September 2007

Steve Fisher/RAL on behalf of JRA1-UK

Steve Fisher/RAL 2

Enabling Grids for E-sciencE

INFSO-RI-508833

Overview

• GMA and R-GMA overview

• Managing Memory Usage

• Buffers

– Consumer

– Primary producer

– Secondary producer

• Loss of control messages

• Replication

– Schema

– Registry

• Conclusions

Steve Fisher/RAL 3

Enabling Grids for E-sciencE

INFSO-RI-508833

GMA

• Defined by the GGF

– Now OGF

• 3 Components

– Producer

– Consumer

– Registry

• Real system needs to tie
down message formats

– This has been done by
R-GMA

• The INFOD-WG at GGF

– IBM, Oracle and others have

defined a GMA compliant

specification

Producer

Registry

Consumer

Register

Lo
ca
teQ

u
e
ry D

a
ta

Steve Fisher/RAL 4

Enabling Grids for E-sciencE

INFSO-RI-508833

R-GMA

• Relational implementation of
the GGF’s GMA

• Provides a uniform method to
publish and access both
information and monitoring
data

• Registry is hidden

• It is intended for use by:

– Other middleware

components

– End users

• Easy for individuals to define,

publish and retrieve data

• All data has a timestamp,

enabling its use for

monitoring

Producer

Registry

Consumer

Register

Lo
ca
teQ

u
e
ry D

a
ta

Steve Fisher/RAL 5

Enabling Grids for E-sciencE

INFSO-RI-508833

R-GMA Producers

• Primary – source of data

• Secondary – republish data

– Co-locate information to speed up queries

– Reduce network traffic

PP

PP

PP

PP

SP

PP – Primary Producer

SP – Secondary Producer

Steve Fisher/RAL 6

Enabling Grids for E-sciencE

INFSO-RI-508833

Three points in the R-GMA evolution

• EDG

– corresponding to the version developed within EDG.

• EGEE-I

– for the version deployed in gLite 3.0

• EGEE-II

– for the version that will be rolled out late Summer and Autumn of

2007 as upgrades to gLite 3.1

� Designed to address properly all the long term problems

Steve Fisher/RAL 7

Enabling Grids for E-sciencE

INFSO-RI-508833

Managing Memory Usage

• R-GMA may have varying amounts of memory available

– May share servlet container (Tomcat) with other servlets

– JVM may be badly configured

• EGEE-II solution

– Use JDK 5 Observer to monitor memory usage

– When memory low RGMABusyException returned for all user

calls that may take extra memory

� inserting data into the system

� creating new producer or consumer resources

• We try to be fair

– If you behave reasonably you should not be penalised

– If problem is caused by too many reasonable demands must

reject requests with the RGMABusyException.

Steve Fisher/RAL 8

Enabling Grids for E-sciencE

INFSO-RI-508833

Avoiding bottlenecks in the data flow

• Buffers are shown “B”

– Primary producer

– Secondary producer

– Consumer

Primary
Producer
Service

Consumer
Service

Producer
Client

Producer
Client

Primary
Producer
Service

Secondary
Producer
Service

Producer
Client

Producer
Client

Consumer
Client

B

B

B

B

Secondary
Producer
Service

B

Steve Fisher/RAL 9

Enabling Grids for E-sciencE

INFSO-RI-508833

Consumer Buffering - problem

• Consumer has a buffer for each client where the results

of the query are stored until they are popped

– If the application is slow to pop() then buffers can fill up.

– Cannot send an RGMABusyException to a pop() as this call

reduces memory use.

Steve Fisher/RAL 10

Enabling Grids for E-sciencE

INFSO-RI-508833

Consumer Buffering - solution

• EGEE-I solution

– Allocate each instance a certain amount of memory

– When this is full data are written to disk

– Once the data are all read from disk, the disk file is removed and

memory is used again.

– If allocation on disk runs out we close the consumer.

– This allows us to cope with peaks of data and is working well

Steve Fisher/RAL 11

Enabling Grids for E-sciencE

INFSO-RI-508833

Primary Producer Buffering

• Problem only exists with memory storage

– Latest store to answer latest queries

� Must hold tuples up to their LRT

– History store for history and continuous queries

� Must hold enough tuples to satisfy the history retention period

� Must hold tuples for which delivery to existing continuous queries

has not been attempted.

Steve Fisher/RAL 12

Enabling Grids for E-sciencE

INFSO-RI-508833

Primary Producer Buffering - solution

• EGEE-I solution

– RGMABufferFullException which is thrown when a producer tries

to publish a new tuple and the producer has exceeded a server

defined limit.

– Works most of the time

• EGEE-II extra

– We have the RGMABusyException to fall back on.

Steve Fisher/RAL 13

Enabling Grids for E-sciencE

INFSO-RI-508833

Secondary Producer Buffering

• In EDG and EGEE-I designs the secondary producer

was made up of consumers and one producer.

• In the EGEE-II design incoming data are stored directly

in the tuple store.

• A memory based tuple store can grow very large but

nobody to send an RGMABusyException to.

• For this reason we do not generally recommend using

memory based tuple stores for secondary producers.

• Will close the secondary producer when unable to deal

with memory demands implied by retention periods.

– This will be added to the servlet code that would normally be

sending the RGMABusyException.

Steve Fisher/RAL 14

Enabling Grids for E-sciencE

INFSO-RI-508833

Coping with loss of control messages

• EDG

– Register once

– Refresh periodically

– Only register results in
notification and start

– Network problems can
block everything

• EGEE-I

– Use register as refresh

� No longer need
messages to get
through

� But much more traffic

– Split queue into slow
medium and fast queue

EDG

EGEE-I

Producer
Service

Consumer
Service

Registry
Service

Q

Register

Refresh Register

Refresh Notification

Start

Data

Producer
Service

Consumer
Service

Registry
Service

Q

Register/Refresh

Register/Refresh

Notification

Start

Data

Q

Q

Steve Fisher/RAL 15

Enabling Grids for E-sciencE

INFSO-RI-508833

Coping with loss of control messages

• EGEE-II

– For a producer a register

message now return the

consumers of interest and vice

versa.

– Producers now notify

consumers themselves

– Messages to other servers go

via a task on the task queue

EGEE-I

EGEE-II

Producer
Service

Consumer
Service

Registry
Service

Q

Register/Refresh

Register/Refresh

Notification

Start

Data

Q

Q

Producer
Service

Consumer
Service

Registry
Service

Register/Refresh Register/Refresh

Start

Data

Notification

Steve Fisher/RAL 16

Enabling Grids for E-sciencE

INFSO-RI-508833

Task Manager

• Assumption is that tasks dependent upon some

unreliable resource

– e.g. network connection to a server and that server

• Assign a key to each resource

• One queue of tasks but a pool of task invocators

• Initially empty set of good keys

• If a task is successful on its first try its key is added to

good set

• If a task fails its key is removed from good set

• Only if key is in good set will more than one task be run

with that key

• Some invocators only take tasks with a good key

Steve Fisher/RAL 17

Enabling Grids for E-sciencE

INFSO-RI-508833

Schema Replication

Slave
Server

Master
Server

Slave
Server

Slave
Server1 2

3

4
U U

U

• VDB is defined by a

configuration file

identifying the master

server

• Each server has full

information for each VDB

served

• Tried to avoid a master but

very difficult

• Updates are first done on

the master

• Replication request is

“updates since”

Steve Fisher/RAL 18

Enabling Grids for E-sciencE

INFSO-RI-508833

Registry replication

• A registry “owns” those records that were last changed by direct

calls and is responsible for pushing updates of these records.

• The registry is updated:

– by direct calls – sets master flag

– upon receipt of replication messages – clear master flag

• If registry unavailable direct update requests are routed to a

different registry instance and records in the new registry will get

the master flag set.

– The system will clean up when a registry assumes mastership for the

record and replicates its records.

• A hash table is used to hold the add registration and delete

registration requests keyed on the primary key of the entry.

– Each replication cycle a new hash table is created to take new entries

and the old one is processed.

• Time stamps are associated with the replication messages

– Can recognise missed messages and recover

Steve Fisher/RAL 19

Enabling Grids for E-sciencE

INFSO-RI-508833

Conclusions

• Try to think of everything that can go wrong.

• Keep it simple.

• Polling is much simpler though less efficient than notification.

• Make the system self correcting and avoid critical messages.

• Avoid single points of failure.

• Reject incoming requests if a server cannot cope rather than just going
slowly or crashing.

• Server code should protect itself against running out of memory.

• External conditions can change at any time: it is not good enough to just
check at service startup.

This will give us a highly

robust and scalable R-GMA.

