

Warning

- Because time is short, some simplifications were necessary
- This presentation does not reflect the full complexity of the systems
- Effort was made to be as close as possible to reality, and to outline the specificities of each data taking environment
- Please refer to appropriate talks in the parallel sessions for further information

Outline

- Trigger / DAQ requirements for LHC
- Data flow designs for the experiments
- Hardware / Software implementations
 - Similarities / Specificities
- Operational aspects and commissioning
 - Conclusions

Trigger (decisions) and Data Acquisition (flow)

CERN LHC experiments

LHC experiments - DAQ needs

	ALICE		ATLAS	CMS	LHCb
Number of detectors	18		9	7	11
Number of Trigger levels (HW / SW)	3/1		1/2	1/1	1/1
Event size	86.5 MB	2.5MB	1.5 MB	1 MB	40kb
L1 Trigger rate	10 KHz	200 KHz	75 KHz	100 KHz	1 MHz
Detector readout	Trigger/Busy Partial readout		Synchronous		
Bandwidth to mass storage	1.25 GB/s	200 MB/s	300 MB/s	100 MB/s	100 MB/s

Pb-Pb p-p

Interaction rate: 40 MHz Large number of channels

LHC experiments - DAQ needs

DAQ design challenges

Data flowing from the detectors:

- Cope with the huge quantity
- Select the appropriate events
- Ensure measurements integrity
- Monitor to check quality
- Record for analysis and archive
- Operate such a complex system

ALICE DAQ

ATLAS DAQ

CMS DAQ

LHCb DAQ

DAQ data flow

DAQ data flow - rates

DAQ data flow - links

Trigger

- Base components common to all LHC experiments:
 Timing, Trigger and Control (TTC) system
 - Synchronization with LHC clock
 - Distribution to detector electronics of:
 - Level-1 trigger
 - · Broadcasted and individually-addressed control signals

- Completed by experiment custom electronics:
 - Work out low level trigger decisions
 - Pipeline buffers on data stream to handle latencies

TTC system

Dedicated electronics developed

in particular:

- TTCmi: machine interface

40.08 MHz LHC bunch-crossing clock

- 11.246 kHz orbit signals
- TTCrx : receiver ASIC for the electronics
 - Radiation tolerant
- VME interface, laser modules, QPLL ...

Detector links

	ALICE	ATLAS	CMS	LHCb
Link	DDL	HOLA	SLINK	GOL
Support	Optical	Optical	Copper	Optical
Maximum transfert rate	265 MB/s	160 MB/s	640 MB/s	200 MB/s
Notes	 Full duplex Radiation tolerant sender unit PCI-X interface 1.6 GB/sec/PC 	Duplex SlinkSingle optical pair	SLink 64bit@100MHzLVDS signals	 ASIC Radiation hard 1.6-Gbit/s serializer separate link for some analog data

Event building

	ALICE	ATLAS	CMS	LHCb
Fragment input	6 - 12 links in PC (DDL -> PCI)	12 links in PC (HOLA -> PCI)	1 link in PC (Myrinet -> PCI)	Up to 36 links (GOL) per readout board (12 fibers ribbon)
Sub-events output	1 x Gigabit	1 x Gigabit	1 x Gigabit	4 x Gigabit
Full event building	Gigabit Ethernet switch			
	Not same list of detectors for each event	CUED 2007 DAO @ LL	First layer of fragment multiplexing with Myrinet: data balance and data to surface	Multiplexing before / after router with switches

Storage

- Local transient data storage (~100 Terabytes)
 - Accommodate data flow peaks
 - 1-7days buffer to cope with uplink unavailability
 - Concurrent read/write by multiple hosts
- Mass storage (Petabytes)
 - CASTOR software
 - Appropriate grid registration tools
 - Tape robots

- Number of nodes: 200 2500 per experiment (ramping up)
 - Handled independently by each experiment
- Rack mounted PCs: limited space especially in underground locations
- Cooling doors with horizontal airflow
 - Includes temperature /smoke detection
- Large power requirements currently 200-500 kW per experiment
 - Partial UPS coverage (<20%, for10 min)
- Remote operation (control rooms and off-site)
 - Power control : dedicated hardware (PDU) or software (IPMI)
 - Remote console access: KVM switches (local station and IP reach),
 SSH on dedicated Ethernet-100 links
- Hardware maintenance
 - contracts with machine providers
 - in-house CERN support for some critical equipment (e.g. network routers)

côté cuisine

Fabric management

- Operating system: CERN Scientific Linux SLC4
- Machine installation 2 flavors:
 - PXE boot, kickstart, YUM / RPM
 - Diskless installation
- Use of some dedicated control PCs in each rack (not all)
- Configuration:
 - Custom or existing software (e.g. Quattor)
 - Database: Oracle, MySQL
 - Users management: LDAP
- Monitoring
 - Custom or existing software (e.g. Nagios, Lemon, IPMI)
 - Appropriate hooks in DAQ software

DAQ software

- Lots of glue to interface the hardware components
- Software provides high flexibility
- Data flow handling:
 - "Simple" operations: pack and ship
 - No payload processing, excepted HLT / monitoring
 - High-speed throughput, low latency
- Distributed control and communication
- Process synchronization
- Dynamic configuration

DAQ software

- Huge software packages
- Usually low-level languages for processes on the data path
- Higher complexity tools for "slow control"
 - State machines
 - Databases for configuration
- Complex libraries to process and filter events
- Non negligible part of graphics interfaces
- Extensive use of code management and building tools (e.g. CVS, RPM, ...), 100ks LOC

Online event / data quality monitoring

	ALICE	ATLAS	CMS	LHCb
Data source	Before/after Event building	All levels	Full events	Full events Readout boards
Graphics	ROOT	ROOT - GTK	ROOT -IGUANA	ROOT
Storage	MySQL	RDB	Oracle	Oracle
Access	Display process	Display process	Web	Display process
Technologies	C++ DIM / SMI	C++, IPC Java	Web services	DIM

- Quite some activity going on
 - Several successive frameworks
 - Actual needs showed up late
- Complete information systems: collect, process, publish
- Wide range of display, sharing, and archiving mechanisms

Online event / data quality monitoring

DAQ operation

- Control rooms
 - Dedicated detector positions
 - Main operation with limited crew once stable
 - Summary to detailed status interfaces
 - Remote tools
- Bookkeeping
 - Existing (e.g. Elog) or custom developed tools

DAQ operation

DAQ operation

Commissioning

- Previous years
 - First tests on small independent systems
 - Integration with electronics
 - Data challenges using central facilities

- Now real and large-scale hardware installed and running
 - Standalone DAQ runs
 - Detector commissioning runs
 - Daily operation
- Ramping up of processing farms
 - Waiting gives you better equipment for a given budget
 - Gradually equip to keep up with data flow / money
- Cosmics data taking in progress or starting this fall

Summary (1/2)

- Heterogeneous trigger/bandwidth requirements
 - Ad-hoc architectures
- Common base trigger components
- Custom electronics for :
 - Low level trigger
 - First layers of pipeline buffers in data flow
 - Input multiplexing
 - Detector data links

Some parts reused in non-LHC experiments

Summary (2/2)

- Commodity hardware (according to experiments needs) for:
 - Networking / Event Building
 - High level trigger
 - Storage
 - Operation and control

Accessibility, performance, long-term maintenance

- Common operating system
- Mostly custom software excepted for few standard tasks (e.g. database)
- Common Mass storage archiving system

DAQ design challenges solutions

- Cope with the huge quantity : appropriate hardware, flexible/scalable architecture
- Select the appropriate events : different filter layers
- Ensure measurements integrity: radiation tolerance,
 data headers, software checks and fault recovery
- Monitor to check quality: automatic histograms and displays, in parallel to data flow
- Record for analysis and archive : disks and tape pools
- Operate such a complex system : dedicated control tools

Conclusions (1/2)

- Main trend: use standard equipment whenever possible
 - Well done, especially where big numbers involved
 - Follow industry standards allows to benefit from best rates (bandwidth and price!)
 - The less cables, the better
- Custom hardware limited where necessary
 - specific constraints at the beginning of data flow
 - critical synchronization / latency, radiation, number of channels

Conclusions (2/2)

- Flexibility will show benefits very soon
 - good designs proved when facing the unexpected
 - all look to have such a quality

- For the future: hope for more standard software?
 - Although no "consumer-like" tasks in DAQ
 - But PC-based cluster computing technologies have significantly progressed: some tools are getting mature
 - Integration of distributed computing tools at the level of OS?

Thanks to the DAQ project leaders and their teams for providing valuable information and feedback to prepare this talk!