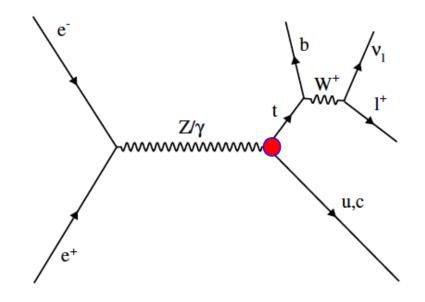


Update of probing of anomalous tqY and tqZ couplings at the FCC-ee

H. Khanpour, S. Khatibi, M. Khatiri, M. Mohammadi Najafabadi January 12, 2015

Analysis in FCC-ee

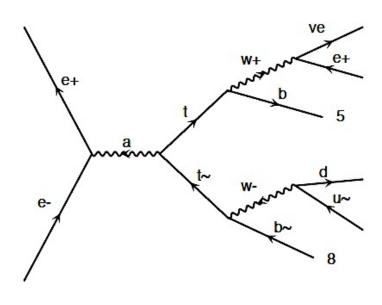

The anomalous FCNC couplings of a top quark with a photon and Z boson can be written in a model independent way using an effective Lagrangian approach.

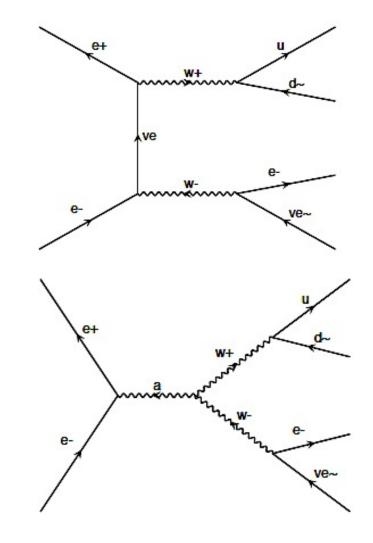
The anomalous FCNC interaction tqA and tqZ lead to production of a top quark in association with a light quark in electron-positron collisions.

In this work, we only concentrate on the leptonic decay of the W boson in top quark, i.e. $t \rightarrow Wb \rightarrow lvb$ with l = e,mu.

Final state: *charged lepton, a b-jet, a light-jet and missing energy*

$$\begin{split} \mathcal{L}_{eff} &= \sum_{q=u,c} \left[e \lambda_{tq} \bar{t} (\lambda^{\nu} - \lambda^{a} \gamma^{5}) \frac{i \sigma_{\mu\nu} q^{\nu}}{m_{t}} q A^{\mu} \right. \\ &+ \frac{g W}{2 c_{W}} \kappa_{tq} \bar{t} (\kappa^{\nu} - \kappa^{a} \gamma^{5}) \frac{i \sigma_{\mu\nu} q^{\nu}}{m_{t}} q \ Z^{\mu\nu} \\ &+ \frac{g W}{2 c_{W}} X_{tq} \ \bar{t} \gamma_{\mu} (x^{L} P_{L} + x^{R} P_{R}) q \ Z^{\mu} \right] + \text{h.c.} \,, \end{split}$$


Backgrounds


Based on the expected signature of the signal events, the main background contributions are originating from:

-WW production when one of the W bosons decays hadronicly and another one decays leptonically, i.e.

 $-e+e- \rightarrow W+W- \rightarrow lv+jj$.

```
-e-e+ \rightarrow ttbar \rightarrow lv+jets
```


Signal and background generation and simulation

- We use **MadGraph5** to generate the signal & background events. The signal and background events are generated in the center-of-mass energies of 240, 350 and 500 GeV.

-We employ Pythia 8.1 package for parton showering, hadronization and decay of unstable particles.

-We use **Delphes** for detector simulation with the following parameterizations:

• Magnetic field: 5 T

Thanks to Patrizia and Barbara for their recommendations for preparing the card.

Signal and background simulations

• Resolution formula for electrons with E > 20 GeV and $|\eta| < 2.5$ (CMS-like):

$$\frac{\Delta E}{E} = \frac{0.07}{\sqrt{E}} \oplus \frac{0.35}{E} \oplus 0.007$$

 $\circ~$ Resolution formula for muons: much dependent on p_{T} and η of the muon (CMS-like).

• Jet energy resolution (ILD-like):

$$\frac{\Delta E_j}{E_j} = \frac{0.30}{\sqrt{E_j}}$$

Signal and background simulations

- $\circ\,$ b-tagging efficiency: we present the results with 80% and 60% for jets with $p_T>10$ GeV and $|\eta|<2.5$.
- A misidentification rate of 1% is taken for light jets.
- To reconstruct jets the FastJet package with an anti-kt algorithm with a cone size of $\mathbf{R} = 0.4$ is used.

Cross sections of signal & backgrounds

Cross-sections×BR(t→lvb) (l = e,mu) for three signal scenarios, tqA , tqZ (vector-tensor) before applying cuts:

\sqrt{s}	$240 { m GeV}$		$350~{ m GeV}$		$500 { m GeV}$	
FCNC couplings	$\sigma({ m fb}) \ { m Signal}$	$\sigma({ m fb})$ Bkg.	$\sigma({ m fb}) \ { m Signal}$	$\sigma(\mathrm{fb})$ Bkg.	$\sigma({ m fb}) \ { m Signal}$	$\sigma(\mathrm{fb})$ Bkg.
$tq\gamma$	$2154(\lambda_{tq})^2$	4879.2	$3832(\lambda_{tq})^2$	3283.7	$4302(\lambda_{tq})^2$	2197.3
$tqZ \ (\sigma_{\mu\nu})$	$1434(\kappa_{tq})^2$	4879.2	$2160(\kappa_{tq})^2$	3283.7	$2282(\kappa_{tq})^2$	2197.3
$tqZ (\gamma_{\mu})$	$916(X_{tq})^2$	4879.2	$786(X_{tq})^2$	3283.7	$464(X_{tq})^2$	2197.3

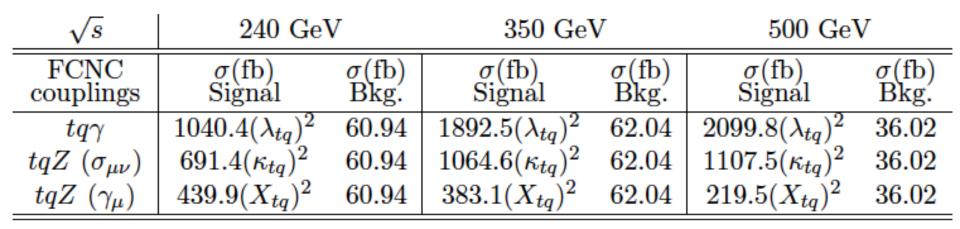
All cross sections have been calculated with MadGraph5.

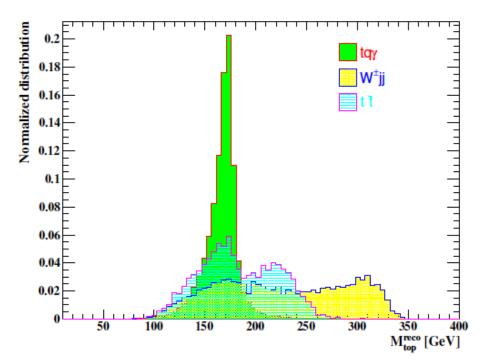
$$egin{aligned} \mathcal{L}_{eff} &= \sum_{q=u,c} \left[e \lambda_{tq} ar{t} (\lambda^v - \lambda^a \gamma^5) rac{i \sigma_{\mu
u} q^
u}{m_t} q A^\mu \ &+ rac{g W}{2 c_W} \kappa_{tq} ar{t} (\kappa^v - \kappa^a \gamma^5) rac{i \sigma_{\mu
u} q^
u}{m_t} q \ Z^{\mu
u} \ &+ rac{g W}{2 c_W} X_{tq} \ ar{t} \gamma_\mu (x^L P_L + x^R P_R) q \ Z^\mu
ight] + ext{h.c.} \,, \end{aligned}$$

Simulation and event selection

-Now, we apply the following detector acceptance cuts on the final state objects:

$$p_T^{l=e,\mu} \ge 10 GeV - \mid \eta_{e,\mu} \mid \le 2.5, p_T^{jets} \ge 10 GeV - \mid \eta_j \mid \le 2.5$$

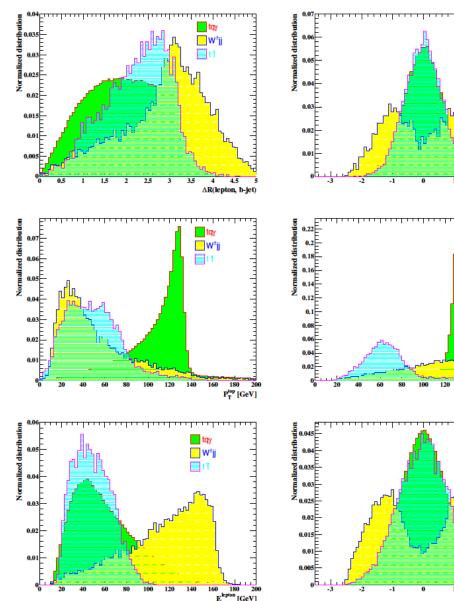

-In addition to these cuts, to have well separated objects, we require $\Delta R > 0.4$.


- One isolated charged lepton is required.

-To suppress ttbar background events, number of jet is required to be exactly two. -To reconstruct top quark, the highest p_T b-tagged jets is chosen in case of more than one b-tag.

-In case of no b-tag jet, the one which gives closest mass to top quark mass is selected.

Event reconstruction



Signal Optimization

To separate signal from background events, we use a MVA analysis with the following input variables:

- Top Mass
- $\Delta R(W,b)$
- $-\eta_b$
- p_{T}^{top}
- E_{lepton}
- E_{jet}
- $-\eta_1$

tqγ 📃

<mark>...</mark>W[±]jj

tqy 🔄

₩±jj

∎tī

140 160

tqγ

<mark>___</mark>₩±jj

t T

light Jet [GeV]

Signal Optimization

After the MVA analysis, a signal efficiency of around **90%** and a background efficiency of **1-3%** are achieved, depends on the signal scenario and the center-of-mass energy of the electron-positron. The cross sections after the MVA analysis are presented in the table:

\sqrt{s}	240 Ge	V	$350~{ m GeV}$	V	$500 { m GeV}$	/
FCNC couplings	$\sigma({ m fb})$ Signal	$\sigma({\rm fb})$ Bkg.	$\sigma({ m fb}) \ { m Signal}$	$\sigma({ m fb})$ Bkg.	$\sigma({ m fb}) \ { m Signal}$	$\sigma({ m fb})$ Bkg.
$tq\gamma$	$964.4(\lambda_{tq})^2$	10.69	$1820.4(\lambda_{tq})^2$	4.33	$1932.6(\lambda_{tq})^2$	2.09
$tqZ \ (\sigma_{\mu\nu})$	$632.4(\kappa_{tq})^2$	9.76	$1020.9(\kappa_{tq})^2$	4.39	$1022.5(\kappa_{tq})^2$	2.20
$tqZ (\gamma_{\mu})$	$398.1(X_{tq})^2$	9.44	$361.4(X_{tq})^2$	5.33	$200.8(X_{tq})^2$	2.28

Upper limits

In order to set upper limit on the branching ratios, we use the CL_S method to set exclusion limits.

First, upper limits are set on the signal cross section, then it is translated to upper Limits on the anomalous couplings \rightarrow upper limit on the branching ratios @ 100/fb:

$\sqrt{s} \; (\text{GeV})$	240	350	5 00	
$Br(t ightarrow q\gamma)$	$2.23 imes10^{-4}$	$2.15 imes 10^{-5}$	$1.04 imes 10^{-5}$	
$Br(t \to qZ) \ (\sigma_{\mu\nu})$	$2.72 imes 10^{-4}$	$3.69 imes10^{-5}$	$1.86 imes 10^{-5}$	3
$Br(t \to qZ) \ (\gamma_{\mu})$	$4.73 imes10^{-4}$	$1.58 imes 10^{-4}$	$1.21 imes 10^{-4}$	

$$\begin{array}{|c|c|c|c|c|c|} \hline \sqrt{s} \ (\text{GeV}) & 240 & 350 & 500 \\ \hline Br(t \to q\gamma) & 5.9 \times 10^{-4} & 2.3 \times 10^{-5} & 8.9 \times 10^{-6} \\ Br(t \to qZ) \ (\sigma_{\mu\nu}) & 8.8 \times 10^{-4} & 6.7 \times 10^{-5} & 1.4 \times 10^{-5} \\ \hline Br(t \to qZ) \ (\gamma_{\mu}) & 1.4 \times 10^{-3} & 1.9 \times 10^{-4} & 8.4 \times 10^{-5} \\ \hline & \text{b-tag eff = 70\%, mistag=5\%} & \frac{\Delta E_j}{E_j} = \frac{40\%}{\sqrt{E_j} \ (GeV)} \oplus 2.5\%, \ \frac{\Delta E_\ell}{E_\ell} = \frac{15\%}{\sqrt{E_\ell} \ (GeV)} \oplus 1\% \\ \hline \end{array}$$

Limits versus b-tagging efficiency

Upper limits on the branching ratios under the assumption of 60% b-tag efficiency:

\sqrt{s}	$Br(t \to q\gamma)$	$Br(t \to qZ) \ (\sigma_{\mu\nu})$	$Br(t \to qZ) \ (\gamma_{\mu})$
$350 {\rm GeV}$	$6.64 imes10^{-5}$	$1.40 imes10^{-4}$	$1.67 imes10^{-4}$

B-tagging efficiency of 80%:

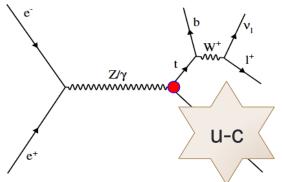
\sqrt{s} (GeV)	240	350	500
$Br(t \rightarrow q\gamma)$	$2.23 imes10^{-4}$	2.15×10^{-5}	$1.04 imes 10^{-5}$
$Br(t \to qZ) \ (\sigma_{\mu\nu})$	$2.72 imes 10^{-4}$	$3.69 imes 10^{-5}$	$1.86 imes 10^{-5}$
$Br(t \to qZ) \ (\gamma_{\mu})$	$4.73 imes10^{-4}$	1.58×10^{-4}	1.21×10^{-4}

Decreasing the b-tagging efficiency from 80% to 60% have a considerable effect on the results.

Comparison with LHC Future results

$\mathcal{B}(t \rightarrow Zq)$	19.5 fb ⁻¹ @ 8 TeV	300 fb ⁻¹ @ 14 TeV	$3000{\rm fb}^{-1}$ @ 14 TeV
Exp. bkg. yield	3.2	26.8	268
Expected limit	< 0.10%	< 0.027%	< 0.010%

LHC tq γ limits: $BR(t \rightarrow u\gamma) < 0.0161\%$, $BR(t \rightarrow c\gamma) < 0.182\%$.


FCC-ee with 100 fb⁻¹ would be able to set upper limits at the order of 10⁻⁵.

With 3 ab⁻¹ at 350 GeV: BR(t \rightarrow q γ) < 3.3×10⁻⁶ and BR(t \rightarrow q γ) < 4.42×10⁻⁶

Summary

- >We repeated the analysis including a raw detector simulation with Delphes.
- >We can achieve upper limits on the branching ratios down
- to 10⁻⁶ with 3 ab⁻¹ at the center-of-mass energy of 350 GeV.
- The results are sensitive to b-tagging efficiency so that decreasing b-tag efficiency leads to make the bounds looser by a factor 3-5.
- >Including charm tagging to the Delphes card to be able to probe tuV and tcV separately \rightarrow

To be done

