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1 Introduction 52
53

The characteristic feature of collisions at the LHC is a5+
center-of-mass energy, 7 TeV in 2010 and 2011, of 8 TeV s
in 2012, and near 14 TeV with the start of the second s
phase of operation in 2015, that is large compared tos
even the heaviest of the known particles. Thus thesess
particles (and also previously unknown ones) will often =
be produced at the LHC with substantial boosts. As a0
result, when decaying hadronically, these particles will &1
not be observed as multiple jets in the detector, but s
rather as a single hadronic jet with distinctive internal
substructure. This realization has led to a new era of
sophistication in our understanding of both standard ®
QCD jets and jets containing the decay of a heavy par-
ticle, with an array of new jet observables and detection **
techniques introduced and studies. To allow the efficient
sharing of results from these jet substructure studies a*
series of BOOST Workshops have been held on a yearly *
basis: SLAC (2009, [?]), Oxford University (2010, [?]),”
Princeton University University (2011, [?]), IFIC Va-*
lencia (2012 [?]), University of Arizona (2013 [?]), and, "
most recently, University College London (2014 [?]). Af-"
ter each of these meetings Working Groups have func- "
tioned during the following year to generate reports’
highlighting the most interesting new results, includ- "
ing studies of ever maturing details. Previous BOOST "
reports can be found at [?,7,7]. *
The following report from BOOST 2013 thus views "’
the study and implementation of jet substructure tech- "
niques as a fairly mature field. The report attempts to "
focus on the question of the correlations between the *
plethora of observables that have been developed and ™
employed, and their dependence on the underlying jet
parameters, especially the jet radius R and jet pp. The®
report is organized as follows: NEED TO GENERATE *
AN OUTLINE OF THE REPORT - ESPECTALLY AS
I UNDERSTAND IT MYSELF.

2 Monte Carlo Samples and Event Selection

2.1 Quark/gluon and W tagging

Samples were generated at /s = 8 TeV for QCD di-
jets, and for W+W ™ pairs produced in the decay of

a (pseudo) scalar resonance and decaying hadronically.
The QCD events were split into subsamples of gg and ¢g
events, allowing for tests of discrimination of hadronic
W bosons, quarks, and gluons.

Individual gg and gq samples were produced at lead-
ing order (LO) using MADGRAPH5, while W W™ sam-
ples were generated using the JHU GENERATOR to al-
low for separation of longitudinal and transverse polar-

izations. Both were generated using CTEQ6L1 PDFs[REF].

The samples were produced in exclusive pr bins of
width 100 GeV, with the slicing parameter chosen to
be the pr of any final state parton or W at LO. At
the parton-level the pp bins investigated were 300-400
GeV, 500-600 GeV and 1.0-1.1 TeV. Since no match-
ing was performed, a cut on any parton was equivalent.
The samples were then all showered through PYTHIAS
(version 8.176) using the default tune 4C.

2.2 Top tagging

Samples were generated at /s = 14 TeV. Standard
Model dijet and top pair samples were produced with
SHERPA 2.0.0[REF], with matrix elements of up to two
extra partons matched to the shower. The top sam-
ples included only hadronic decays and were generated
in exclusive py bins of width 100 GeV, taking as slic-
ing parameter the maximum of the top/anti-top pr.
The QCD samples were generated with a cut on the
leading parton-level jet pr, where parton-level jets are
clustered with the anti-k; algorithm and jet radii of
R = 0.4, 0.8, 1.2. The matching scale is selected to be
Qcut = 40,60,80 GeV for the prmin = 600,1000, and
1500 GeV bins, respectively.

The analysis again relies on FASTJET 3.0.3 for jet
clustering and calculation of jet substructure observ-
ables, and an upper and lower pr cut are applied to
each sample to ensure similar pr spectra in each bin.
The bins in leading jet pr that are investigated for top
tagging are 600-700 GeV, 1-1.1 TeV, and 1.5-1.6 TeV.
ED: What jet algorithm is used to define the pr
bins?
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Fig. 1 Comparisons of the leading jet pr spectrum of the gg background to the WW signal in the pp 300-400 GeV parton pp
slice using the different anti-kr jet distance parameters explored in this pr bin. These distributions are formed prior to the

300-400 GeV leading jet pr requirement.

3 Jet Algorithms and Substructure Observables

In this section, we define the jet algorithms and observ-
ables used in our analysis. Over the course of our study,
we considered a larger set of observables, but for the fi-
nal analysis, we eliminated redundant observables for
presentation purposes. In Sections [3:1] 3-2} [3:3 and 3
we first describe the various jet algorithms, groomers -
taggers and other substructure variables used in these
studies, and then in Section [3.5 list which observables 1:
are considered in each section of this report, and the »

exact settings of the parameters used. .

118

3.1 Jet Clustering Algorithms 1o

120
Jet clustering: Jets were clustered using sequentialir
jet clustering algorithms[REF]. Final state particles 42
J are assigned a mutual distance d;; and a distance
to the beam, d;g. The particle pair with smallest d;;
are recombined and the algorithm repeated until the®
smallest distance is instead the distance to the beam,
d;B, in which case 7 is set aside and labelled as a jet.
The distance metrics are defined as
AR2,
R;j ’ (1)

dip = pr (2)

where ARZ; = (An)* + (A¢)?. In this analysis, we usens
the anti-k; algorithm (y = —1), the Cambridge/Aachemzs
(C/A) algorithm (v = 0)[REF], and the k; algorithmues
(v = 1)[REF], each of which has varying sensitivity touwr
soft radiation in defining the jet. 128

2
dzg - mln(pTw pT’;)

129
Qjets: We also perform non-deterministic jet cluster-iso
ing[REF]. Instead of always clustering the particle pairix

with smallest distance d;;, the pair selected for combi-
nation is chosen probabilistically according to a mea-
sure

—a (dyj 7dlnin)/dxnin’

3)
where dpin, is the minimum distance for the usual jet
clustering algorithm at a particular step. This leads to a
different cluster sequence for the jet each time the Qjet
algorithm is used, and consequently different substruc-
ture properties. The parameter « is called the rigidity
and is used to control how sharply peaked the probabil-
ity distribution is around the usual, deterministic value.
The Qjets method uses statistical analysis of the result-
ing distributions to extract more information from the
jet than can be found in the usual cluster sequence. We
use a = 0.1 and 25 trees per event for all the studies
presented here.

Pjoxe

3.2 Jet Grooming Algorithms

Pruning: Given a jet, re-cluster the constituents us-
ing the C/A algorithm. At each step, proceed with the
merger as usual unless both

2m;

J
Rcutv
pry

min(pr;, pr;)

< Zeut and ARW >
Prij

(4)
in which case the merger is vetoed and the softer branch
discarded. The default parameters used for pruning[REF]in
this study are z¢yt = 0.1 and Rcyy = 0.5. One advan-
tage of pruning is that the thresholds used to veto soft,
wide-angle radiation scale with the jet kinematics, and
so the algorithm is expected to perform comparably
over a wide range of momenta.
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Trimming: Given a jet, re-cluster the constituents intoiss
subjets of radius Ry, with the k; algorithm. Discardies

all subjets ¢ with 166

167
pri < fcut prj- (5)168
The default parameters used for trimming[REF]in this'®
study are Ripim = 0.2 and f.t = 0.03. 170

171

Filtering:[REF] Given a jet, re-cluster the constituent?
into subjets of radius Ry, with the C/A algorithm. Re-"
define the jet to consist of only the hardest N subjets,!™
where N is determined by the final state topology and'™
is typically one more than the number of hard prongs in'"
the resonance decay (to include the leading final-state”
gluon emission). ED: Do we actually use filtering'™
as described here anywhere? 1

180
Soft drop: Given a jet, re-cluster all of the constituents'®
using the C/A algorithm. Iteratively undo the last stage'®?
of the C/A clustering from j into subjets ji, jo. If 183

184

AR5 \?
Feut <R12> ’ (6)186

7

min(pr1, pra2)
pr1+ pr2

discard the softer subjet and repeat. Otherwise, take j18
188
to be the final soft-drop jet[REF]. Soft drop has two
189
input parameters, the angular exponent 8 and the soft-
190
drop scale z.,t, with default value zqy; = 0.1. ED: Soft-
191
drop actually functions as a tagger when § = —1
192
193
3.3 Jet Tagging Algorithms 104

195
Modified Mass Drop Tagger: Given a jet, re-cluster®
all of the constituents using the C/A algorithm. Ttera-o7
tively undo the last stage of the C/A clustering from jio

into subjets ji, jo with m;, > m,,. If either 199
200

(2 22

min(p7, p
mj, > pm; or ( T; T2) AR?Q < Yeut, (7
j 202

then discard the branch with the smaller transverse
mass my = \/m? + p%;, and re-define j as the branch™
with the larger transverse mass. Otherwise, the jet is™
tagged. If de-clustering continues until only one branch™
remains, the jet is untagged. In this study we use by207

default © = 1.0 and yeut = 0.1. 208

209

0

Johns Hopkins Tagger: Re-cluster the jet using the”
C/A algorithm. The jet is iteratively de-clustered, and
at each step the softer prong is discarded if its pr isy
less than 6, prjet. This continues until both prongs are
harder than the pt threshold, both prongs are softer
than the pr threshold, or if they are too close (|An;;|+
|A¢ij| < dr); the jet is rejected if either of the latter

conditions apply. If both are harder than the pr thresh-
old, the same procedure is applied to each: this results
in 2, 3, or 4 subjets. If there exist 3 or 4 subjets, then
the jet is accepted: the top candidate is the sum of the
subjets, and W candidate is the pair of subjets closest
to the W mass. The output of the tagger is my, my,
and 6}, a helicity angle defined as the angle, measured
in the rest frame of the W candidate, between the top
direction and one of the W decay products. The two
free input parameters of the John Hopkins tagger in
this study are d,, and dr, defined above.

HEPTopTagger: Re-cluster the jet using the C/A
algorithm. The jet is iteratively de-clustered, and at
each step the softer prong is discarded if m/mis >
(there is not a significant mass drop). Otherwise, both
prongs are kept. This continues until a prong has a mass
m; < m, at which point it is added to the list of sub-
jets. Filter the jet using Rg, = min(0.3, AR;;), keeping
the five hardest subjets (where AR;; is the distance be-
tween the two hardest subjets). Select the three subjets
whose invariant mass is closest to m;. The output of the
tagger is my, mw, and 6y, a helicity angle defined as
the angle, measured in the rest frame of the W candi-
date, between the top direction and one of the W decay
products. The two free input parameters of the HEP-
TopTagger in this study are m and u, defined above.

Top Tagging with Pruning: For comparison with
the other top taggers, we add a W reconstruction step
to the trimming algorithm described above. A W can-
didate is found as follows: if there are two subjets, the
highest-mass subjet is the W candidate (because the
W prongs end up clustered in the same subjet); if there
are three subjets, the two subjets with the smallest in-
variant mass comprise the W candidate. In the case of
only one subjet, no W is reconstructed.

Top Tagging with Trimming: For comparison with
the other top taggers, we add a W reconstruction step
to the trimming algorithm described above. A W can-
didate is found as follows: if there are two subjets, the
highest-mass subjet is the W candidate (because the
W prongs end up clustered in the same subjet); if there
are three subjets, the two subjets with the smallest in-
variant mass comprise the W candidate. In the case of
only one subjet, no W is reconstructed.

3.4 Other Jet Substructure Observables

Qjet mass volatility: As described above, Qjet al-
gorithms re-cluster the same jet non-deterministically
to obtain a collection of interpretations of the jet. For
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each jet interpretation, the pruned jet mass is computedzso
with the default pruning parameters. The mass volatil-

ity, 1Qjet, is defined as 231
(m3) — (m,)? 22
IQjer = T my (8),5

234
where averages are computed over the Qjet interpreta-

tions.

5
236

7

N-subjettiness: N-subjettiness| REF]quantifies hovvz8
well the radiation in the jet is aligned along N direc-,
tions. To compute N-subjettiness, T]f ), one must first

identify N axes within the jet. Then, 240

T™N = d—lo ZpTi min (AR%, ce AR?W) , (9)

9

241
242

243
where distances are between particles 7 in the jet and,,,

the axes,

do =Y pri R

245
( 10 )246
247

and R is the jet clustering radius. The exponent 3 is™

a free parameter. There is also some choice in how™
the axes used to compute N-subjettiness are deter-"
mined. The optimal configuration of axes is the one”
that minimizes N-subjettiness; recently, it was shown™
that the “winner-takes-all” axes can be easily computed™
and have superior performance compared to other min-ss
imization techniques[REF]. ED: Do we use WTA?
Otherwise why do we mention this? .
A more powerful discriminant is often the ratio,

9

256

257
N

(11)258

259
While this is not an infrared-collinear (IRC) safe ob-xo
servable, it is calculablefREF]and can be made IRCos
safe with a loose lower cut on 7n_1. 262

263

TN,N—1 = .
TN-1

Energy correlation functions: The transverse mo-
mentum version of the energy correlation functions are

defined as[REF]: 264

ECF(N, B) =

11<i2<...<in€j \a=1 b=1 c=b+1 267

(1 2)263

269
where ¢ is a particle inside the jet. It is preferable to,

work in terms of dimensionless quantities, particularly

the energy correlation function double ratio: 271

() _ ECF(N +1,8)ECF(N —1,8)

CN = . (13)273
ECF(N, )2

274
This observable measures higher-order radiation fromers
leading-order substructure. 276

Z (ﬂpm> <1ﬁ1 ﬁ AB:;C

3.5 Observables for Each Analysis

Quark/gluon discrimination:

— The ungroomed jet mass, m.

— 1-subjettiness, 7'18 with 8 = 1, 2. The N-subjettiness
axes are computed using one-pass k; axis optimiza-
tion.

— 1-point energy correlation functions, C’{ﬂ) with g =
1, 2.

— The pruned Qjet mass volatility, I Qjet-

— The number of constituents (Nconstits)-

W vs. gluon discrimination:

— The ungroomed, trimmed (Mgyim ), and pruned (Mprun)
jet masses.

— The mass output from the modified mass drop tag-
ger (Mmmds)-

— The soft drop mass with 8 = —1, 2 (msq).

— 2-point energy correlation function ratio 02’8 =1 (we
also studied 8 = 2 but did not show its results be-
cause it showed poor discrimination power).

— N-subjettiness ratio 7o/71 with 8 = 1 (75;~") and
with axes computed using one-pass k; axis optimiza-
tion (we also studied 8 = 2 but did not show its re-
sults because it showed poor discrimination power).

— The pruned Qjet mass volatility.

Top vs. QCD discrimination:

— The ungroomed jet mass.

— The HEPTopTagger and the Johns Hopkins tagger.

— Trimming and grooming supplemented with W can-
didate identification.

— N-subjettiness ratios 72/71 and 73/79 with § =1
and the “winner-takes-all” axes.

— 2-point energy correlation function ratios Czﬁ =l and
cy=t

— The pruned Qjet mass volatility, IQjet-

4 Multivariate Analysis Techniques

bles into an optimal discriminant. In all cases vari-

bles are combined using a boosted decision tree (BDT)
as implemented in the TMVA package [?]. We use the
BDT implementation including gradient boost. An ex-
ample of the BDT settings are as follows:

— NTrees=1000

— BoostType=Grad
Shrinkage=0.1

— UseBaggedGrad=F
— nCuts=10000
MaxDepth=3

}3 Multivariate techniques are used to combine vari-
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— UseYesNoLeaf=F 3
— nEventsMin=200 325

Exact parameter values are chosen to best reduce the

.. 327
effect of overtraining.
328

329
5 Quark-Gluon Discrimination z?
In this section, we examine the differences between quarfgl2
and gluon-initiated jets in terms of substructure vari-
ables, and to determine to what extent these variables
are correlated. Along the way, we provide some theoret-
ical understanding of these observables and their per-ss
formance. The motivation for these studies comes not
only from the desire to “tag” a jet as originating fromusss
a quark or gluon, but also to improve our understand-ss
ing of the quark and gluon components of the QCDsss
backgrounds relative to boosted resonances. While re-sso
cent studies have suggested that quark/gluon taggingso
efficiencies depend highly on the Monte Carlo generatorsa
used, we are more interested in understanding the scal-ss
ing performance with pr and R, and the correlationsss
between observables, which are expected to be treatedsss
consistently within a single shower scheme. 345
346
347
5.1 Methodology 348
349
These studies use the gg and gg MC samples, describedsso
previously in Section [2] The showered events were clus-ss:
tered with FASTJET 3.03[REF]using the anti-kr algo-ss
rithm[REF]with jet radii of R = 0.4, 0.8, 1.2. In bothsss
signal and background, an upper and lower cut on thesss
leading jet pr is applied after showering/clustering, tosss
ensure similar py spectra for signal and background inss
each pr bin. The bins in leading jet pr that are inves-s
tigated in the W-tagging and q/g tagging studies aress
300-400 GeV, 500-600 GeV, 1.0-1.1 TeV. The distribu-ss
tion of the leading jet pr for the gg and WW samplesso
in the 300-400 GeV parton pr slice prior to the require-ss
ment on the leading jet pr is shown in Figurell] for thes.
R=0.8 and R=1.2 anti-kt jet radii considered in thisses
pr slice. Figures [2] and [3] show the equivalent leadingss
jet pr distributions for the jet radii considered in theses
500-600 GeV and 1.0 - 1.1 TeV slices respectively. Var-es
ious jet grooming approaches are applied to the jets, asser
described in Section Only leading and subleadingsss
jets in each sample are used. 369
Figure [4] shows a comparison of the pr and 7 dis<n
tributions of the quark and gluon samples with pr =m
500 — 600 GeV. The differences in the py distributionss»
can be attributed to different out-of-cone radiation pat-ss
terns for quark and gluons; these differences becomes

smaller as the R parameter is increased. The different
7 distributions are related to the different parton distri-
bution functions initiating q¢ and gg production. The
qualitative features of the n distributions do not change
as the R parameter is changed. As the pr increases, the
n distributions peak more strongly near zero, as the
probability peaks for processes initiated by partons of
comparable energy. In our analysis, we make a narrow
window cut of 100 GeV in pr after showering, and so
the effects of the different q/g pr spectra on our anal-
ysis is suppressed. (ED: check)

5.2 Single Variable Discrimination

Figure [5| shows the mass of jets in the quark and gluon
samples when using different groomers. Jets built with
the anti-k7 algorithm with R=0.8 and with pp = 500 —
650 GeV are used (BS:Check pT bins in this sec-
tion!). Qualitatively, the application of grooming shifts
the mass distributions towards lower values as expected.
No clear gain in discrimination can be seen, and for
certain grooming parameters, such as the use of soft
drop with 8 = —1 a clear loss in discrimination power
is observed; this is because the soft-drop condition for
B8 = —1 discards collinear radiation, and the differences
between quarks and gluons are manifest in the collinear
structure (spin, splitting functions, etc.).

The performance of different substructure variables
is explored in Figure[6] Among those considered, nconstits
provides the highest separation power, followed by C’f =0
and CP=" as was also found by the CMS and ATLAS
Collaborations|[REF].

To more quantitatively study the power of each ob-
servable as a discriminator for quark/gluon tagging, Re-
ceiver Operating Characteristic (ROC) curves are built
by scanning each distribution and plotting the back-
ground efficiency (to select gluon jets) vs. the signal
efficiency (to select quark jets). Figure [7| shows these
ROC curves for all of the variables shown in Figure [0]
and the ungroomed mass, representing the best per-
forming mass variable, for jets of pr = 300 — 400 GeV.
In addition, we show the ROC curve for the tagger built
from a BDT combining all the variables. The details of
how the BDT is constructed are explained in Section [4]
Clearly, neonstits 18 the best performing variable for all
Rs, even though C{;:o is close, particularly for R=0.8.
Most other variables have similar performance, except
the Q-jet volatility, which shows significantly worse dis-
crimination (this may be due to our choice of rigid-
ity a = 0.1, while other studies suggest that a smaller
value, such as a = 0.01, produces better results). The
combination of all variables shows somewhat better dis-
crimination.
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We now examine how performance of masses andso.
substructure observables changes with pr and R. Forss
jet masses, few variations are observed as the radius pa-se
rameter of the jet reconstruction is increased in the twoses
highest pr bins; this is because the radiation is moress
collimated and the dependence on R is consequently397
smaller. However, for the 300 — 400 GeV bin, the use of
small-R jets produces a shift in the mass distributions
towards lower values, so that large-R jet masses are,
more stable with pr and small-R jet masses are smaller401
at low-pr as expected from the spatial constraints im-
posed by the R parameter. These statements are ex-, .
plored more quantitatively later in this section. (BS:404

Do we have plots for this?) w05

The evolution of some of the substructure variablesws
distributions with pp and R is less trivial than for theswr
jet masses. In particular, changing the R parameter ataos

high pr changes significantly the C? for f > 0 and
the neconstits distributions, while leaving all other distri-
butions qualitatively unchanged. This is illustrated in
Figure[§|for 5 =0 and § =1 using a = 1 in both cases
for jets with pr =1 — 1.2 TeV.

The shift towards lower values with changing R is
evident for the Clﬁ =! distributions, while the stability of
Cf =% can also be observed. These features are present
in all pr bins studied, but are even more pronounced for
lower pr bins. The shape of the Q-jet volatility distri-
bution shows some non-trivial shape that deserves some
explanation. Two peaks are observed, one at low volatil-
ity values and one at mid-volatility. These peaks are
generated by two somewhat distinct populations. The
high volatility peak arises from jets that get their mass
primarily from soft (and sometimes wide-angle) emis-
sions. The removal of some of the constituents when
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building Q-jets thus changes the mass significantly, in-ws
creasing the volatility. The lower volatility peak cor-ss
responds to jets for which mass is generated by a hard
emission, which makes the fraction of Q-jets that change
the mass significantly to be smaller. Since the proba-2s
bility of a hard emission is proportional to the colour
charge (squared), the volatility peak is higher for gluon*
jets by about the colour factor C4/CF. 427

428

In summary, the overall discriminating power be-so
tween quarks and gluons decreases with increasing Ruso
due to the reduction in the amount of out-of-cone radi-:
ation differences and and increased contamination fromus
the underlying event (BS: is this ok?). The broad per-ss
formance features discussed for this py bin also applyss

to the higher pr bins. These is further quantified in the
next section.

5.3 Combined Performance and Correlations

The quark/gluon tagging performance can be further
improved over cuts on single observables by combin-
ing multiple observables in a BDT; due to the chal-
lenging nature of ¢/g-tagging, any improvement in per-
formance with multivariable techniques could be crit-
ical for certain analyses, and the improvement could
be more substantial in data than the marginal benefit
found in MC and shown in Fig. 7] Furthermore, insight
can be gained into the features allowing for quark/gluon
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discrimination if the origin of the improvement is un-s
derstood. To quantitatively study this improvement, wesss
build quark/gluon taggers from every pair-wise combi-s,
nation of variables studied in the previous section for,,

comparison with the all-variable combination. 161

In order to quantitatively study the value of each'™
variable for quark/gluon tagging, we study the gluomsss
rejection, defined as 1/€g1uon, at a fixed quark selectiorrss
efficiency of 50% using jets with pr =1 — 1.2 TeV andsss
for different R parameters. Figure [J] shows the gluomnsss
rejection for each pair-wise combination. The pair-wises?
gluon rejection at 50% quark efficiency can be comparedsss
to the single-variable values shown along the diagonal.eo
The gluon rejection for the BDT all-variable combina~o
tion is also shown on the bottom right of each plot. Asm
already observed in the previous section, nconstits 1S thes
most powerful single variable and C{B =0 follows closely.r
However, the gains are largely correlated; the combinedsrs
performance of nconstits and Cfﬁ =9 s generally poorerss
than combinations of nconstits With other jet substruc-ws
ture observables, such as 7. Interestingly, in spite of thewr
high correlation between nconstits and C£ﬂ :0), the two-s

variable combinations of nconstits generally fare worse
than two-variable combinations with Cfﬁ =0 I partic-
ular, the combinations of Tlﬁzl or C§,3=1) with Neonstits
are capable of getting very close to the rejection achiev-
able through the use of all variables for R = 0.4 and
R =0238.

Tagger performance is generally better at small R.
The overall loss in performance with increasing R can
be seen in most single variables we study; this is ex-
pected, since more of the parton radiation is captured in
the jet and more contamination from underlying event
occurs, suppressing the differences between ¢/g jets.
The principal exceptions are Ciﬂ =9 and the Q-jet mass
volatility, which are both quite resilient to increasing R.
For C’fﬁ =) this is due to the fact that the exponent on
AR is zero, and so soft radiation at the periphery of
the jet does not substantially change the distribution;
as a result, the performance is largely independent of R.
Similarly, the soft radiation distant from the jet centre
will be vetoed during pruning regardless of the cluster
sequence, and so the R-dependence of I'gje is not sig-
nificant. (BS: Check my logic?) Their combination,
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Fig. 6 Comparisons of quark and gluon distributions of different substructure variables for leading jets in the pr = 500 —
650 GeV bin using the anti-kr R=0.8 algorithm.

however, does perform slightly worse at larger R. (BSus
I don’t understand this, but it is a ~ 10% ef-uss
fect, so maybe not too significant?). By contrastss
Tl(ﬂ =2 and Cfﬁ:m are particularly sensitive to increas-so
ing R since, for § = 2, large-angle emissions are givens:
a larger weight.

These observations are qualitatively similar acrossies
all ranges of pr. Quantitatively, however, there is a lossis

492

493

of rejection power for the taggers made of a combi-
nation of variables as the pr decreases. This can be
observed in Fig. for anti-kr R=0.4 jets of different
prs. Clearly, most single variables retain their gluon re-
jection potential at lower pr. However, when combined
with other variables, the highest performing pairwise
combinations lose ground with respect to other pair-
wise combinations. This is also reflected in the rejection
of the tagger that uses a combination of all variables,
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which is lower at lower prs. [do we understand this?]
(BS: This is a bit of a guess, but could it be that
there is typically less radiation for low pr, and so
you’re more sensitive to fluctuations; since you
have less access to information, combinations of
observables perform less well than at high pr.)
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6 Boosted W-Tagging 522
523
524

525

In this section, we study the discrimination of a boosted”™
hadronically decaying W signal against a gluon back-""
ground, comparing the performance of various groomed™”
jet masses, substructure variables, and BDT combina-"
tions of groomed mass and substructure. We produce™
ROC curves that elucidate the performance of the vari-**
ous groomed mass and substructure variables. A range’
of different distance parameters R for the anti-kp jet™
algorithm are explored, as well as a variety of kine-”
matic regimes (lead jet pr 300-400 GeV, 500-600 GeV,™
1.0-1.1 TeV). This allows us to determine the perfor-*
mance of observables as a function of jet radius and jet™
boost, and to see where different approaches may break

down. The groomed mass and substructure variables

are then combined in a BDT as described in Section s
and the performance of the resulting BDT discriminant

explored through ROC curves to understand the degreess
to which variables are correlated, and how this changess«o
with jet boost and jet radius.

2

4

541

6.1 Methodology

These studies use the WW samples as signal and the
dijet gg samples to model the QCD background, as
described previously in Section [2] Whilst only gluonic
backgrounds are explored here, the conclusions as to
the dependence of the performance and correlations on
the jet boost and radius have been verified to hold also
for gq backgrounds. ED: To be checked!

In each of the three pr slices considered jets are
reconstructed using the anti-kr algorithm with distance
parameter R=0.4, 0.8 and 1.2, as described in Section[2}
They then have various grooming approaches applied
as described in Section 3.5] (ED: Probably better if
some of the information from Sections [2] and [3.5]
is brought into this section to avoid this back-
referencing.)

6.2 Single Variable Performance

In this section we will explore the performance of the
various groomed jet mass and substructure variables in
terms of discriminating signal and background, and how
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this performance changes depending on the kinematicss
bin and jet radius considered. 596
Figure [11] the compares the signal and backgroundse
in terms of the different groomed masses explored forss
the anti-kt R=0.8 algorithm in the py 500-600 bin. Oness
can clearly see that in terms of separating signal andsoo
background the groomed masses will be significantlyeo:
more performant than the ungroomed anti-kt R=0.802
mass. Figure [12| compares signal and background in thesos
different substructure variables explored for the samesos
jet radius and kinematic bin. 605
Figures and [15] show the single variable RO Chos
curves compared to the ROC curve for a BDT combi-so
nation of all the variables (labelled “allvars”), for eacheos
of the anti-kr distance parameters considered in eachsoo
of the kinematic bins. One can see that, in all casesswo
the “allvars” option is considerably better performants
than any of the individual single variables considered g2
indicating that there is considerable complementaritys:
between the variables, and this will be explored furthers
in the next section. 615
Although the ROC curves give all the relevant in-sw
formation, it is hard to compare performance quanti-7
tatively. In Figures [16] [I7] and [I8] are shown matricess
which give the background rejection for a signal effi-s10
ciency of 70% when two variables (that on the x-axis»
and that on the y-axis) are combined in a BDT. Theses2
are shown separately for each pr bin and jet radius
considered. The diagonal of these plots correspond to
the background rejections for a single variable BDT,,
and can thus be examined to get a quantitative mea-
sure of the individual single variable performance, ands;
to study how this changes with jet radius and momenta.s;
One can see that in general the most performantes
single variables are the groomed masses. However, ines
certain kinematic bins and for certain jet radii, 02’8 o
has a background rejection that is comparable to orss
better than the groomed masses. 629
By comparing Figures [16(a)} [17(a)| and [I8(b)] weso
can see how the background rejection performance evolves
as we increase momenta whilst keeping the jet radiuss

in going from the 300-400 GeV to 1.0-1.1 TeV bins.
Conversely the rejection power of 05 =t dramatically
increases with increasing pr for R=0.8, but does not
improve with pp for the larger jet radius R=1.2. ED:
Can we explain this? Again, should we add some
of the 1-D plots?

By comparing the individual sub-figures of Figures[16]

and [I8 we can see how the background rejection perfor-
mance depends on jet radius within the same pr bin.
To within ~ 25%, the background rejection power of
the groomed masses remains constant with respect to
the jet radius. However, we again see rather different
behaviour for the substructure variables. In all p7 bins
considered the most performant substructure variable,
Cg :1, performs best for an anti-kr distance parame-
ter of R=0.8. The performance of this variable is dra-
matically worse for the larger jet radius of R=1.2 (a
factor seven worse background rejection in the 1.0-1.1
TeV bin), and substantially worse for R=0.4. For the
other jet substructure variables considered, I'gje; and
7'251:1, their background rejection power also reduces for
larger jet radius, but not to the same extent. ED: In-
sert some nice discussion/explanation of why jet
substructure power generally gets worse as we
go to large jet radius, but groomed mass perfor-
mance does not. Probably need the 1-D figures
for this.

6.3 Combined Performance

The off-diagonal entries in Figures and [T§] can
be used to compare the performance of different BDT
two-variable combinations, and see how this varies as
a function of pr and R. By comparing the background
rejection achieved for the two-variable combinations to
the background rejection of the “all variables” BDT,
one can understand how much more discrimination is
possible by adding further variables to the two-variable
BDTs.

One can see that in general the most powerful two-

fixed to R=0.8. Similarly, by comparing Figures[16(b)| [1sé{b)iariable combinations involve a groomed mass and a

and we can see how performance evolves with press
for R=1.2. For both R=0.8 and R=1.2 the backgroundsss
rejection power of the groomed masses increases withsss
increasing pr , with a factor 1.5-2.5 increase in rejec-ss7
tion in going from the 300-400 GeV to 1.0-1.1 TeV bins.es
ED: Add some of the 1-D plots comparing sig-o
nal and bkgd in the different masses and pT binsso
here? However, the C5 =", I Qjet and 5= substructures
variables behave somewhat differently. The backgroundss
rejection power of the I'gje; and 7'51:1 variables bothss
decrease with increasing pr , by up to a factor twosa

non-mass substructure variable (C5 =", I Qjet OT =1,
Two-variable combinations of the substructure variables
are not powerful in comparison. Which particular mass
+ substructure variable combination is the most pow-
erful depends strongly on the pr and R of the jet, as
discussed in the sections that follow.

There is also modest improvement in the background
rejection when different groomed masses are combined,
compared to the single variable groomed mass perfor-
mance, indicating that there is complementary informa-
tion between the different groomed masses. In addition,
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leading jet mass distributions.

there is an improvement in the background rejectionsss
when the groomed masses are combined with the un-ess
groomed mass, indicating that grooming removes some,,
useful discriminatory information from the jet. These,
observations are explored further in the section below.

Generally one can see that the R=0.8 jets offer the,,
best two-variable combined performance in all pz bins,
explored here. This is despite the fact that in the high-,
est 1.0-1.1 GeV pr bin the average separation of the,,
quarks from the W decay is much smaller than 0.8,
and well within 0.4. This conclusion could of course be,,
susceptible to pile-up, which is not considered in this,
study.

677
678
6.3.1 Mass + Substructure Performance o7
680
As already noted, the largest background rejection ates:
70% signal efficiency are in general achieved using thosess
two variable BDT combinations which involve a groomeebs
mass and a non-mass substructure variable. For bothsss
R=0.8 and R=1.2 jets, the rejection power of these twosss
variable combinations increases substantially with in-sss

(e) Soft-drop B8 = 2 mass

in the pz 500-600 GeV bin using the anti-k+ R=0.8 algorithm:

creasing pr , at least within the pr range considered
here.

For a jet radius of R=0.8, across the full pr range
considered, the groomed mass + substructure variable
combinations with the largest background rejection are
those which involve Cg =!. For example, in combination
with mdeQ, this produces a five-, eight- and fifteen-fold
increase in background rejection compared to using the
groomed mass alone. In Figure the low degree of
correlation between m’7? versus C5~' that leads to
these large improvements in background rejection can
be seen. One can also see that what little correlation
exists is rather non-linear in nature, changing from a
negative to a positive correlation as a function of the
groomed mass, something which helps to improve the
background rejection in the region of the W mass peak.

However, when we switch to a jet radius of R=1.2
the picture for Cg =! combinations changes dramati-
cally. These become significantly less powerful, and the
most powerful variable in groomed mass combinations
becomes 7'261:1 for all jet pr considered. Figureshows
the correlation between m”;2 and C5~" in the pp 1.0
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Fig. 12 Comparisons of the QCD background to the WW signal in the pp 500-600 GeV bin using the anti-kr R=0.8 algorithm:

substructure variables.
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Fig. 13 The ROC curve for all single variables considered for W tagging in the pr 300-400 GeV bin using the anti-kT R=0.8
algorithm and R=1.2 algorithm.
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Fig. 14 The ROC curve for all single variables considered for W tagging in the pr 500-600 GeV bin using the anti-kT R=0.8
algorithm and R=1.2 algorithm.
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Fig. 15 The ROC curve for all single variables considered for W tagging in the py 1.0-1.1 TeV bin using the anti-k0 R=0.4
algorithm, anti-kt R=0.8 algorithm and R=1.2 algorithm.
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Fig. 16 The background rejection for a fixed signal efficiency (70%) of each BDT combination of each pair of variables
considered, in the pr 300-400 GeV bin using the anti-kr R=0.8 algorithm and R=1.2 algorithm. Also shown is the background
rejection for a BDT combination of all of the variables considered.
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Fig. 17 The background rejection for a fixed signal efficiency (70%) of each BDT combination of each pair of variables
considered, in the pr 500-600 GeV bin using the anti-kT R=0.8 algorithm and R=1.2 algorithm. Also shown is the background
rejection for a BDT combination of all of the variables considered.

- 1.2 TeV bin for the various jet radii considered. Fig-ser
ure 21| is the equivalent set of distributions for mfcl:Q(sgs
and 75, '. One can see from Figure 20| that, due to thess
sensitivity of the observable to to soft, wide-angle ra-ro
diation, as the jet radius increases Cg =! increases and

becomes more and more smeared out for both signalo
and background, leading to worse discrimination power.

This does not happen to the same extent for 7'231:1. Wero2
can see from Figure 21| that the negative correlation be-3

tween mfdzz and 75! that is clearly visible for R=0.47
705

decreases for larger jet radius, such that the groomed
mass and substructure variable are far less correlated
and 751:1 offers improved discrimination within a mf 0 2

mass window.

6.3.2 Mass + Mass Performance

The different groomed masses and the ungroomed mass
are of course not fully correlated, and thus one can al-
ways see some kind of improvement in the background
rejection (relative to the single mass performance) when
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Fig. 18 The background rejection for a fixed signal efficiency (70%) of each BDT combination of each pair of variables
considered, in the pr 1.0-1.1 TeV bin using the anti-k+ R=0.4, R=0.8 and R=1.2 algorithm. Also shown is the background
rejection for a BDT combination of all of the variables considered.

two different mass variables are combined in the BDT 7z
However, in some cases the improvement can be dra-z
matic, particularly at higher py , and particularly forrs
combinations with the ungroomed mass. For example 2
in Figure [L8 we can see that in the pp 1.0-1.1 TeV bings
the combination of pruned mass with ungroomed massrms
produces a greater than eight-fold improvement in thernr
background rejection for R=0.4 jets, a greater than five-s
fold improvement for R=0.8 jets, and a factor ~two im-o
provement for R=1.2 jets. A similar behaviour can berso
seen for mMDT mass. In Figures[22] 23] and 24 is showia
the 2-D correlation plots of the pruned mass versus thes:
ungroomed mass separately for the WW signal and ggrss
background samples in the pp 1.0-1.1 TeV bin, for thess
various jet radii considered. For comparison, the corre-ss

lation of the trimmed mass with the ungroomed mass,
a combination that does not improve on the single mass
as dramatically, is shown. In all cases one can see that
there is a much smaller degree of correlation between
the pruned mass and the ungroomed mass in the back-
grounds sample than for the trimmed mass and the un-
groomed mass. This is most obvious in Figure[22] where
the high degree of correlation between the trimmed and
ungroomed mass is expected, since with the parameters
used (in particular Rt = 0.2) we cannot expect trim-
ming to have a significant impact on an R=0.4 jet. The
reduced correlation with ungroomed mass for pruning
in the background means that, once we have made the
requirement that the pruned mass is consistent with
a W (i.e. ~80 GeV), a relatively large difference be-
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tween signal and background in the ungroomed mass
still remains, and can be exploited to improve the back-
ground rejection further. In other words, many of the
background events which pass the pruned mass require-
ment do so because they are shifted to lower mass (to
be within a signal mass window) by the grooming, but
these events still have the property that they look very
much like background events before the grooming. A
single requirement on the groomed mass only does not
exploit this. Of course, the impact of pile-up, not con-
sidered in this study, could significantly limit the degree
to which the ungroomed mass could be used to improve
discrimination in this way.

6.3.3 “All Variables” Performance

As well as the background rejection at a fixed 70% sig-

nal efficiency for two-variable combinations, Figures|[16} [I7]

and also report the background rejection achieved
by a combination of all the variables considered into a
single BDT discriminant. One can see that, in all cases,
the rejection power of this “all variables” BDT is signif-
icantly larger than the best two-variable combination,
by between a factor 2-3. This indicates that beyond the
best two-variable combination there is still significant
complementary information availiable in the remaining
variables in order to improve the discrimination of sig-
nal and background.

ED: This section will be filled in when we
have got the 3-variable combination studies, so
we have a better idea where the dramatic in-
crease in rejection power with “all variables” is
coming from. Would also be good to show per-
haps some of the “all variables” BDT discrimi-
nants in 1-D plots.
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Fig. 22 2-D plots showing the correlation between groomed and ungroomed mass for WW and gg events in the pp 1.0-1.1
TeV bin using the anti-kT R=0.4 algorithm.
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Fig. 23 2-D plots showing the correlation between groomed and ungroomed mass for WW and gg events in the pp 1.0-1.1
TeV bin using the anti-kr R=0.8 algorithm.
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Fig. 24 2-D plots showing the correlation between groomed and ungroomed mass for WW and gg events in the pp 1.0-1.1
TeV bin using the anti-kr R=1.2 algorithm.
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7 Top Tagging 784
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800
In this section, we study the identification of boosted,

top quarks at Run II of the LHC. Boosted top quarks,,
result in large-radius jets with complex substructure,,
containing a b-subjet and a boosted W. The additional,,
kinematic handles coming from the reconstruction of
the W mass and b-tagging allows a very high degree,,
of discrimination of top quark jets from QCD back-,,

grounds. 00
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We consider top quarks with moderate boost (600—827
1000 GeV), and perhaps most interestingly, at high828
boost (2 1500 GeV). Top tagging faces several chal™
lenges in the high-py regime. For such high-pr jets,830
the b-tagging efficiencies are no longer reliably known. *
Also, the top jet can also accompanied by additionals»

radiation with pp ~ my, leading to combinatoric ambi-
guities of reconstructing the top and W, and the pos-
sibility that existing taggers or observables shape the
background by looking for subjet combinations that re-
construct m;/my . To study this, we examine the per-
formance of both mass-reconstruction variables, as well
as shape observables that probe the three-pronged na-
ture of the top jet and the accompanying radiation pat-
tern.

7.1 Methodology

We study a number of top-tagging strategies, in partic-
ular:

1. HEPTopTagger

2. Johns Hopkins Tagger (JH)
3. Trimming

4. Pruning

The top taggers have criteria for reconstructing a top
and W candidate, and a corresponding top and W mass,
as described in Section while the grooming algo-
rithms (trimming and pruning) do not incorporate a
W-identification step. For a level playing field, where
grooming is used we construct a W candidate mass,
myy, from the three leading subjets by taking the mass
of the pair of subjets with the smallest invariant mass;
in the case that only two subjets are reconstructed, we
take the mass of the leading subjet. The top mass, my,
is the mass of the groomed jet. All of the above taggers
and groomers incorporate a step to remove pile-up and
other soft radiation.

We also consider the performance of jet shape ob-
servables. In particular, we consider the N-subjettiness
ratios 7'36 = and 72[31:1, energy correlation function ratios
05 =! and 05 =1 and the Qjet mass volatility I". In ad-
dition to the jet shape performance, we combine the jet
shapes with the mass-reconstruction methods described
above to determine the optimal combined performance.

For determining the performance of multiple vari-
ables, we combine the relevant tagger output observ-
ables and/or jet shapes into a boosted decision tree
(BDT), which determines the optimal cut. Addition-
ally, because each tagger has two input parameters, as
described in Section [3:3] we scan over reasonable val-
ues of the parameters to determine the optimal value for
each top tagging signal efficiency ED: Optimal value
is that which gives largest bkgd rejection?. This
allows a direct comparison of the optimized version of
each tagger. The input values scanned for the various
algorithms are:

— HEPTopTagger: m € [30,100] GeV, p € [0.5,1]
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— JH Tagger: §, € [0.02,0.15], 5 € [0.07,0.2] 884
— Trimming: fcu € [0.02,0.14], Riyim € [0.1,0.5] s
— Pruning: z.,; € [0.02,0.14], Reys € [0.1,0.6] 886

887

7.2 Single-observable performance :Zz
We start by investigating the behaviour of individual™
jet substructure observables. Because of the rich, three-""
pronged structure of the top decay, it is expected that™
combinations of masses and jet shapes will far out-
perform single observables in identifying boosted tops.™
However, a study of the top-tagging performance of sin-"
gle variables facilitates a direct comparison with the W™
tagging results in Section [6] and also allows a straight-""
forward examination of the performance of each observ-""
able for different pr and jet radius. 899
ED: I think the conclusions in this paragraph
that for W-tagging the shape variables perform®
as well as the mass, are not generally true, only**
holds for one variable 026 =! at small-R, and not*
for ;. Fig. 25 shows the ROC curves for each of the*
top-tagging observables, with the bare (ungroomed) jet*®
mass also plotted for comparison. Unlike W tagging
the jet shape observables perform more poorly than jet?
mass. As an example illustrating why this is the case®
consider N-subjettiness. The W is two-pronged and the®®
top is three-pronged; therefore, we expect 151 and 7351
to be the best-performant N-subjettiness ratio, respec-!
tively. However, 191 also contains an implicit cut on the’
denominator, 71, which is strongly correlated with jet
mass. Therefore, 797 combines both mass and shape in-**
formation to some extent. By contrast, and as is clear®
in Fig the best shape for top tagging is 732, which®'
contains no information on the mass. Therefore, it is un-*"
surprising that the shapes most useful for top tagging’®
are less sensitive to the jet mass, and under-perform rel-oo
ative to the corresponding observables for W tagging. o
Of the two top tagging algorithms, we can see fromox
Figure that the Johns Hopkins (JH) tagger out-x
performs the HEPTopTagger in terms of its signal-to-es
background separation power in both the top and W
candidate masses. This discrepancy is larger at higherss
pr and larger jet radius. ED: We do not show ines
ROC curves that the discrepancy is larger ator
high pr and jet radius, should we? In Figure [26}s
we show the histograms for the top mass output fromos
the JH and HEPTopTagger for different R in the prosw
1.5-1.6 TeV bin, and in Figure 27] for different pr aten
at R =0.8, optimized at a signal efficiency of 30%.os
One can see from these figures that the likely reasomnoss
for the better performance of the JH tagger is that, ine
the HEPTopTagger algorithm, the jet is filtered to se-s
lect the five hardest subjets, and then three subjets aress

chosen which reconstruct the top mass. This require-
ment tends to shape a peak in the QCD background
around my for the HEPTopTagger, while the JH tagger
has no such requirement. It has been suggested by An-
ders et al. [?] that performance in the HEPTopTagger
may be improved by selecting the three subjets recon-
structing the top only among those that pass the W
mass constraints, which somewhat reduces the shap-
ing of the background. Note that both the JH tagger
and the HEPTopTagger are superior to the grooming
algorithms at using the W candidate inside of the top
for signal discrimination; this is because the the prun-
ing and trimming algorithms do not have inherent W-
identification steps and are not optimized for this pur-
pose.

In Figures and we directly compare ROC
curves for jet shape observable performance and top
mass performance respectively in the three different pp
bins considered whilst keeping the jet radius fixed at
R=0.8. The input parameters of the taggers, groomers
and shape variables are separately optimized in each
pr bin. One can see from Figure 28] that the tagging
performance of jet shapes do not change substantially
with pp. The observables T?Eg =1 and Qjet volatility I
have the most variation and tend to degrade with higher
pr, as can be seen in Figures and . This makes
sense, as higher-pr QCD jets have more, harder emis-
sions within the jet, giving rise to substructure that
fakes the signal. By contrast, from Figure we can
see that most of the top mass observables have superior
performance at higher pr due to the radiation from the
top quark becoming more collimated. The notable ex-
ception is the HEPTopTagger, which degrades at higher
pr, likely in part due to the background-shaping effects
discussed earlier.

In Figures and we directly compare ROC
curves for jet shape observable performance and top
mass performance respectively for the three different jet
radii considered within the py 1.5-1.6 TeV bin. Again,
the input parameters of the taggers, groomers and shape
variables are separately optimized for each jet radius.
We can see from these figures that most of the top
tagging variables, both shape and reconstructued top
mass, perform best for smaller radius. This is likely
because, at such high pr, most of the radiation from
the top quark is confined within R = 0.4, and having
a larger jet radius makes the observable more suscep-
tible to contamination from the underlying event and
other uncorrelated radiation. In Figures [33] [34] and [35]
we compare the individual top signal and QCD back-
ground distributions for each shape variable considered
in the pp 1.5-1.6 TeV bin for the various jet radii. One
can see that the distributions for both signal broaden
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Fig. 25 Comparison of single-variable top-tagging performance in the pr = 1—1.1 GeV bin using the anti-k7, R=0.8 algorithm.

with increasing R, degrading the discriminating power sss
For C*=" and C{"=" . the background distributionss
are shifted upward as well. Therefore, the discriminat-oss
ing power generally gets worse with increasing R. Thess
main exception is for C’éﬂ :1), which performs optimallyeso
at R = 0.8; in this case, the signal and background coin-e
cidentally happen to have the same distribution aroundss:
R = 0.4, and so R = 0.8 gives better discrimination.sss
ED: Should we also include 1-D plots compar-e:
ing signal vs bkgd in the top mass, and how thissss
varies with radius? Having said that, there a asws
lot of 1-D plots here already, might want to try

and cut down. %07
968

969
7.3 Performance of multivariable combinations 970

971
We now consider various BDT combinations of the ob-
servables from Section [7.2] using the techniques de-rs
scribed in Section {4} In particular, we consider the per-
formance of individual taggers such as the JH taggerus
and HEPTopTagger, which output information abouters

the top and W candidate masses and the helicity an-
gle; groomers, such as trimming and pruning, which
remove soft, uncorrelated radiation from the top can-
didate to improve mass reconstruction, and to which
we have added a W reconstruction step; and the com-
bination of the outputs of the above taggers/groomers,
both with each other, and with shape variables such as
N-subjettiness ratios and energy correlation ratios. For
all observables with tuneable input parameters, we scan

and optimize over realistic values of such parameters,
as described in Section [T.1l

In Figure we directly compare the performance
of the HEPTopTagger, the JH tagger, trimming, and
pruning, in the pp = 1 — 1.1 TeV bin using jet radius
R=0.8, where both m;and myare used in the groomers.
Generally, we find that pruning, which does not natu-
rally incorporate subjets into the algorithm, does not
perform as well as the others. Interestingly, trimming,
which does include a subjet-identification step, performs
comparably to the HEPTopTagger over much of the
range, possibly due to the background-shaping observed
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Fig. 28 Comparison of individual jet shape performance at different pr using the anti-k+ R=0.8 algorithm.

in Section By contrast, the JH tagger outperformsss
the other algorithms. To determine whether there isss
complementary information in the mass outputs fromos
different top taggers, we also consider in Figure [37] ass
multivariable combination of all of the JH and HEP-so
TopTagger outputs. The maximum efficiency of the comyg,,
bined JH and HEPTopTaggers is limited, as some frac-,
tion of signal events inevitably fails either one or other,

of the taggers. We do see a 20-50% improvement in
performance when combining all outputs, which sug-
gests that the different algorithms used to identify the
top and W for different taggers contains complemen-
tary information.

In Figure 38| we present the results for multivariable
combinations of the top tagger outputs with and with-
out shape variables. We see that, for both the HEP-
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TopTagger and the JH tagger, the shape observablesos
contain additional information uncorrelated with thews
masses and helicity angle, and give on average a facms
tor 2-3 improvement in signal discrimination. We segy;
that, when combined with the tagger outputs, bothus
the energy correlation functions Cy + C3 and the N
subjettiness ratios To; + 732 give comparable performm
mance, while the Qjet mass volatility is slightly worseim
this is unsurprising, as Qjets accesses shape informa,,
tion in a more indirect way from other shape observm;
ables. Combining all shape observables with a single tops
tagger provides even greater enhancement in discrimirns
nation power. We directly compare the performance ofys
the JH and HEPTopTaggers in Figure Combinggy,
ing the taggers with shape information nearly erasesyps
the difference between the tagging methods observed i,
Figure this indicates that combining the shape ings,
formation with the HEPTopTagger identifies the differs,,
ences between signal and background missed by the tags,,
ger alone. This also suggests that further improvement,,,
to discriminating power may be minimal, as varioug,,

1035

multivariable combinations are converging to within a
factor of 20% or so.

In Figure we present the results for multivari-
able combinations of groomer outputs with and without
shape variables. As with the tagging algorithms, com-
binations of groomers with shape observables improves
their discriminating power; combinations with 732 + 721
perform comparably to those with C3 + Cs, and both
of these are superior to combinations with the mass
volatility, I'. Substantial improvement is further possi-
ble by combining the groomers with all shape observ-
ables. Not surprisingly, the taggers that lag behind in
performance enjoy the largest gain in signal-background
discrimination with the addition of shape observables.
Once again, in Figure [39(c), we find that the differ-
ences between pruning and trimming are erased when
combined with shape information.

Finally, in Figure [I0] we compare the performance
of each of the tagger/groomers when their outputs are
combined with all of the shape observables considered.
One can see that the discrepancies between the perfor-
mance of the different taggers/groomers all but van-
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Fig. 32 Comparison of individual jet shape performance at different R in the pr = 1.5 — 1.6 TeV bin.

ishes, suggesting perhaps that we are here utilising allus
available signal-background discrmination informationyus
and that this is the optimal top tagging performancems
that could be achieved in these conditions. 1047

Up to this point we have just considered the comuss
bined multivariable performance in the pr 1.0-1.1 TeWos
bin with jet radius R=0.8. We now compare the BDTvso

combinations of tagger outputs, with and without shapess:

variables, at different pp. The taggers are optimized
over all input parameters for each choice of pr and sig-
nal efficiency. As with the single-variable study, we con-
sider anti-kr jets clustered with R = 0.8 and compare
the outcomes in the pr = 500 — 600 GeV, pr =1-1.1
TeV, and pr = 1.5 — 1.6 TeV bins. The comparison
of the taggers/groomers is shown in Figure The be-
haviour with pr is qualitatively similar to the behaviour
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of the mobservable for each tagger/groomer shown inors
Figure this suggests that the pr behaviour of they.
taggers is dominated by the top mass reconstructionwrs
As before, the HEPTopTagger performance degradesos
slightly with increased pr due to the background shap-
ing effect, while the JH tagger and groomers modestly

improve in performance. 1o
1078

In Figure [I2] we show the pr dependence of BD T
combinations of the JH tagger output combined witloso
shape observables. We find that the curves look nearlyos:
identical: the pr dependence is dominated by the tojws:
mass reconstruction, and combining the tagger outputsss
with different shape observables does not substantiallyoss
change this behaviour. The same holds true for trimsos
ming and pruning. By contrast, HEPTopTagger RO Goss
curves, shown in Figure 3] do change somewhat whenos
combined with different shape observables; due to thess
suboptimal performance of the HEPTopTagger at highoso
pr , we find that combining the HEPTopTagger withoso
Céﬁzl), which in Figure is seen to have some modsoo
est improvement at high pr , can improve its perforswe

mance. Combining the HEPTopTagger with multiple
shape observables gives the maximum improvement in
performance at high pr relative to at low pr .

In Figure [44] we compare the BDT combinations
of tagger outputs, with and without shape variables, at
different jet radius R in the pr = 1.5 — 1.6 TeV bin.
The taggers are optimized over all input parameters
for each choice of R and signal efficiency. We find that,
for all taggers and groomers, the performance is always
best at small R; the choice of R is sufficiently large to
admit the full top quark decay at such high pr , but
is small enough to suppress contamination from addi-
tional radiation. This is not altered when the taggers
are combined with shape observable. For example, in
Figure [45] is shown the depedence on R of the JH tag-
ger when combined with shape observables, where one
can see that the R-dependence is identical for all com-
binations. The same holds true for the HEPTopTagger,
trimming, and pruning.
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7.4 Performance at Sub-Optimal Working Points

1112
1113
Up until now, we have re-optimized our tagger andus
groomer parameters for each pr, R, and signal efficiencys
working point. In reality, experiments will choose a fiu1s
nite set of working points to use. How do our resultgur
hold up when this is taken into account? To address thisus
concern, we replicate our analyses, but only optimizeus
the top taggers for a particular pr/R/efficiency and apuo
ply the same parameters to other scenarios. This allows2
us to determine the extent to which re-optimization ig22
necessary to maintain the high signal-background disu23
crimination power seen in the top tagging algorithmgs2s
we study. The shape observables typically do not haves
any input parameters to optimize. Therefore, we focugzs
on the taggers and groomers, and their combination2r
with shape observables, in this section. 1128

: We show in Figure [46*

0

Optimizing at a single pr
the performance of the top taggers, using just the recon"
structed top mass as the discriminating variable, with'

all input parameters optimized to the pr = 1.5 — 1.6
TeV bin, relative to the performance optimized at each
pr. We see that while the performance degrades by
about 50% when the high-py optimized points are used
at other momenta, this is only an O(1) adjustment of
the tagger performance ED: what does O(1) mean?,
with trimming and the Johns Hopkins tagger degrad-
ing the most. The jagged behaviour of the points is due
to the finite resolution of the scan. We also observe a
particular effect associated with using suboptimal tag-
gers: since taggers sometimes fail to return a top can-
didate, parameters optimized for a particular efficiency
es at pr = 1.5 — 1.6 TeV may not return enough signal
candidates to reach the same efficiency at a different
pr. Consequently, no point appears for that py value.
This is not often a practical concern, as the largest gains
in signal discrimination and significance are for smaller
values of €g, but it is something that must be consid-
ered when selecting benchmark tagger parameters and
signal efficiencies.
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Fig. 41 Comparison of BDT combination of tagger performance at different pr using the anti-kT R=0.8 algorithm.

The degradation in performance is more pronouncediss
for the BDT combinations of the full tagger outputsyss
shown in Figure , particularly at very low signal effiiss
ciency where the optimization picks out a cut on the taihss
of some distribution that depends precisely on the pr/ Riss
of the jet. Once again, trimming and the Johns Hopmse
kins tagger degrade more markedly. Similar behaviourie
holds for the BDT combinations of tagger outputs plusis
all shape observables. 1162
1163
Optimizing at a single R: We perform a similar analsiss
ysis, optimizing tagger parameters for each signal efues
ficiency at R = 1.2, and then use the same paramesss
ters for smaller R, in the pr 1.5-1.6 TeV bin. In Figuer
ure we show the ratio of the performance of thes
top taggers, using just the reconstructed top mass asieo
the discriminating variable, with all input parametersiro
optimized to the R = 1.2 values compared to inputin
parameters optimized separately at each radius. Whiler
the performance of each observable degrades at smallis
€sig compared to the optimized search, the HEPTopsa
Tagger fares the worst as the observed is quite sensitiveirs

to the selected value of R. It is not surprising that a
tagger whose top mass reconstruction is susceptible to
background-shaping at large R and pr would require a
more careful optimization of parameters to obtain the
best performance.

The same holds true for the BDT combinations of
the full tagger outputs, shown in Figure. The perfor-
mance for the sub-optimal taggers is still within an O(1)
factor of the optimized performance, and the HEPTop-
Tagger performs better with the combination of all of
its outputs relative to the performance with just mg.
The same behaviour holds for the BDT combinations
of tagger outputs and shape observables.

Optimizing at a single efficiency: The strongest as-
sumption we have made so far is that the taggers can
be reoptimized for each signal efficiency point. This is
useful for making a direct comparison of the power of
different top tagging algorithms, but is not particularly
practical for the LHC analyses. We now consider the
effects when the tagger inputs are optimized once, in
the eg = 0.3 —0.35 bin, and then used to determine the
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Fig. 42 Comparison of BDT combination of JH tagger + shape at different pr using the anti-kT R=0.8 algorithm.

full ROC curve. We do this in the pr1 — 1.1 TeV bimes

and with R = 0.8.

1195

The performance of each tagger, normalized to its
performance optimized in each bin, is shown in Fig-
ure [50] for cuts on the top mass and W mass, and in
Figure 51| for BDT combinations of tagger outputs and
shape variables. In both plots, it is apparent that op-
timizing the taggers in the 0.3-0.35 efficiency bin gives
comparable performance over efficiencies ranging from
0.2-0.5, although performance degrades at small and
large signal efficiencies. Pruning appears to give espe-
cially robust signal-background discrimination without
re-optimization, possibly due to the fact that there are
no absolute distance or pr scales that appear in the
algorithm. Figures [50] and [51] suggest that, while opti-
mization at all signal efficiencies is a useful tool for com-
paring different algorithms, it is not crucial to achieve
good top-tagging performance in experiments.

7.5 Conclusions

ED: Conclusions to be added
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Fig. 51 The BDT combinations in the pr =1 — 1.1 TeV bin using the anti-k+ R=0.8 algorithm. Taggers are combined with

the following shape observables: TQ(le) +T§§=1), Cé’szl) + Céﬁzn, I'Gjet, and all of the above (denoted “shape”). The inputs

for each tagger are optimized for the ez = 0.3 — 0.35 bin.
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