FCC-hh Background Estimates

Charles Young (SLAC)

BACKGROUND SIMULATION APPLICATION

Background Simulation Program

- Physics processes by FLUKA
 - De facto standard for background calculations
- Validated against ATLAS Run-1 measurements
- Apply to FCC-hh
- Predictions only as good as simulation inputs,
 e.g. geometry, truly represents reality

Simulation Geometry

- Based on "Option 2"
 - Twin solenoids: main + shielding
 - Dipoles in forward regions
- Detectors (material similar to those in ATLAS)
 - Tracker
 - EM calorimeter
 - Hadronic calorimeter
 - Muon detector
- No final-focus quadrupole, other beam line elements or beam line shielding

Twin Solenoid + Dipoles

ATIONAL ACCELERATOR LABORATORY

2. Option 2: Twin Solenoid + Dipoles

Twin Solenoid: a 6 T, 12 m dia x 23 m long main solenoid + an active shielding coil

Important advantages:

- ✓ Nice Muon tracking space: area with 2 to 3 T for muon tracking in 4 layers.
- Very light: 2 coils + structures, ≈ 5 kt, only ≈ 4% of the option with iron yoke!
- ✓ Much smaller: system outer diameter is significantly less than with iron.

Simulation Geometry

Rapidity Coverage

SOME GENERAL COMMENTS

η Dependence of Background

• Multiplicity flat in central η and falling for large η

Outgoing <u>energy</u> peak at larger η
 - η_{peak} ~ 7 - 8 for √s = 14 TeV

Note logarithmic scale

 Background typically much more benign in barrel region than in endcap / forward regions

Beam Pipe

- (Radially) thin beam pipe is O(1) interaction length at η_{peak} due to glancing incidence angle
 - Flange: near normal incidence → "thin"
- Small radius near IP for physics performance
- Larger radius (away from IP) → shower initiation point further away in z
 - -r = 3 cm for z < 7.5 m and 6 cm for z > 7.5 m

z(m)	<i>r</i> = 3 cm	5	10	15	
η = 4	0.8	1.4	2.7	4.1	Inside barrel
5	2.2	3.7	7.4	11	
6	6.1	10	20	30	After endcap
7	16	27	55	82 .	Arter enucap

Barrel Tracker

- Two broad categories of background
 - Direct p-p interaction products
 - Multiplicity slow function of \sqrt{s}
 - Dose per particle insensitive to particle energy
 - Back scatter from calorimeters
 - Inner part of calorimeter acts as shield against outer part of calorimeter
 - Larger inner radius → lower background density
- Background probably not much worse than in LHC (for the same luminosity)
 - Beware end of barrel staves, i.e. high η

Barrel Calorimeter

- Self shielding (but every shield is also a source)
 - Rapid decrease in background farther from IP
- Radiation damage concerns primarily for sensors at inner radius locations
 - Degree of vulnerability depends on sensor:
 LAr, crystals, plastic scintillators, Si, etc
- Front-end electronics concerns greatly reduced if located at outer radius
 - Not obviously a problem if embedded within calorimeter

Barrel Muon Detector

- Calorimeter expected to provide better shielding in FCC-hh than in LHC
 - Calorimeters becoming thicker to contain hadronic showers of high p_T hadrons in FCC-hh

"Common understanding" 10 λ at LHC→12λ at 100 TeV (including ~1λ EM in front)

- Background dominated by min-bias events
 - Slow rise in jet and particle energy
 - Shower length ~ log(E)
- Expect tolerable background when shielded by calorimeter

Unshielded Barrel Muon Detector

2. Option 2: Twin Solenoid + Dipoles

Twin Solenoid: a 6 T, 12 m dia x 23 m long main solenoid + an active shielding coil

Important advantages:

- ✓ Nice Muon tracking space: area with 2 to 3 T for muon tracking in 4 layers.
- Very light: 2 coils + structures, ≈ 5 kt, only ≈ 4% of the option with iron yoke!
- Much smaller: system outer diameter is significantly less than with iron .

Endcap Background

- Very sensitive to details of beam-line geometry
 - Arbitrary choice of beam pipe diameter
 - No shielding in this simulation
 - No final-focus quadrupole
 - No masks / collimators
- Strong function of radius
- Endcap results should be treated as qualitative at best

BACKGROUND ESTIMATES

Simulation Inputs

- Events
 - Generated by Phojet
 - $-\sqrt{s} = 100 \ TeV$
- Normalization assumptions
 - $-\sigma_{pp}$ = 100 mb
 - "year" = 10^7 sec
 - Instantaneous luminosity = 10³⁶ cm⁻² s⁻¹
 - Rescale to suit your assumptions

Simulation Outputs

- 2-D distributions in (r,z)
 - Implied azimuthal symmetry
- Energy deposition map reflects simulation geometry
- Dose and fluence maps for background
 - Directly read off value at any (r,z)
 - Take slice at given z and plot as function of r or vice versa

Energy Deposition

Total Ionizing Dose

1-MeV n_{eq} Fluence

Tracker

- Background decreases with r and increases with z
 - Longer path length in beam pipe
- Highest background at end of first layer
 - Dose $\sim 5 \, 10^7 \, Gy / year$
 - Fluence $\sim 1.7 \cdot 10^6 \, kHz / cm^2$
- Results sensitive to input geometry
 - Aluminium beam pipe at r = 3 cm
 - First detector layer

 - r = 5 cm
 Length = +/- 7 m
 - $\eta \sim 5.5$ (surely not a rational layout)
 - No service material

TID in Barrel Calorimeter

"Maximum" in Calorimeters

ECal	More reliable	Depends on position	Very sensitive to beam line shielding etc
	Barrel	Extended Barrel	Endcap
Dose (Gy/year)	4 10³	6.5 10 ⁴	
Fluence (KHz/cm²)	6 10 ⁴	2 10 ⁵	
HCal	~ 10x		GARBAGE PERFECT GARBAGE MODEL GARBAGE RESULTS
	Barrel	Extended Barrel	Endcap
Dose (Gy/year)	5 10 ²	3 10 ⁴	
Fluence (KHz/cm²)	7 10 ³	6 10 ⁵	
	~ 1	li	

Muon Detector

- Relatively benign environment in shielded barrel region, i.e. z < 12 m in this layout
- Much worse background in unshielded barrel region, i.e. 12 < z < 18 m
- Endcap background strong function of geometry

	Barrel Shielded	Barrel Unshielded	Endcap
Dose (Gy/year)	100	1000	GARBAGE PERFECT GARBAGE
Fluence (KHz/cm²)	10	500	DATA MODEL RESULTS

CONCLUSION

Summary

- Background simulation application validated using ATLAS Run-1 data
 - Much can be done on back of envelop
- Final-focus quadrupole magnet and beam line shielding missing in FCC-hh geometry
 - endcap predictions not to be trusted and therefore numerical results not reported here
- Barrel predictions more robust
 - Backgrounds likely tolerable
 - Avoid unshielded path from beam line

Suggestion

- More realistic layout in forward region depends on
 - Machine parameters such as luminosity, L*
 - Physics requirements such as η coverage
 - Beam line shielding (but shielding is also source)
- More reliable endcap background estimates
- Iteration likely to be required
- Do not worry too much about barrel now
- Technological advances in next decades will likely supersede any detailed planning today

