CALICE SDHCAL Status M.C Fouz, E. Calvo, J.Marín, J.Puerta, A.Verdugo CIEMAT XI Meeting of the Spanish Network for Future Linear Colliders. Barcelona 15-16 January 2015 ## Semi-Digital Hadronic Calorimeter (SDHCAL) Absorber: Steel (20 mm) Detector: GRPC (Glass Resistive Plate Chambers) operating in avalanche mode 1x1 cm² pads. Semi-Digital Readout (which and how many pads with signal over a threshold), 2bits - 3 thresholds Technological prototype 1 pad= 1cm², interpad 0.5 mm - Large detector (1x1 m²) with almost no dead zones - Large electronics board - One-side services - Self-supporting mechanical structure - Power-pulsed electronics Absorber plates Planarity < 500 μm Thickness tolerance 50μm # SDHCAL Energy calibration #### Triggerless acquisition mode → Time Clustering for event building It includes also cosmics. Particle identification (muons, electrons, pions) is applied #### **Energy Reconstruction – Binary mode** $$E_{reco} = (C+D N_{tot}) N_{tot}$$ Allows restoring linearity C=0.0543, D=0.09x10⁻⁴ Determined from data (Ebeam vs Nhit) #### $N_{tot} = N1 + N2 + N3$ Number of pads with signal N1 = Nhits crossing only the first (lower) threshold N2 = Nhits crossing the 2nd threshold but not the 3rd N3 = Nhits crossing the 3rd (higher) threshold ### **Energy Reconstruction – Multithreshold mode** $$E_{reco} = \alpha N1 + \beta N2 + \gamma N3$$ $$\alpha$$, β , $\gamma = f(N_{tot})$ (Quadratic function) $E_{reco} = \alpha N1 + \beta N2 + \gamma N3$ $\alpha, \beta, \gamma = f(N_{tot}) \text{ (Quadratic function)}$ $\alpha, \beta, \gamma \text{ are obtained by minimizing from a data subsample}$ $$\chi^{2} = \sum_{i=1}^{N} \frac{\left(E_{beam}^{i} - E_{reco}^{i}\right)^{2}}{E_{beam}^{i}}$$ ## SDHCAL Energy calibration ### **Time Spill correction** GRPC efficiency decreases at high rate. Efficiency decrease with time in spill due to charge accumulative effects. This can be corrected #### Track hits correction. Single tracks can produce a signal bigger than 2nd or 3rd threshold and can bias the measurement Identifying those tracks, removing the hits belonging to them from N1,N2,N3 and giving them the same weight can improve the results $$E_{reco} = \alpha N1' + \beta N2' + \gamma N3' + c N_T$$ #### **Density weighting** Separate the hits in high-density (e.m) and low-density (had) and give different weights Density computed in a volume $1.5(x) \times 1.5(y) \times 3.1 \text{ cm}^3 > 9 \rightarrow \text{High density}$ | | High density part | | Low density part | | Track | |---------------------|--|---|---|---|------------------| | E _{reco} = | $\alpha_h N1_h + \beta_h N2_h + \gamma_h N3_h$ | + | $-\alpha_{l} N1_{l} + \beta_{l} N2_{l} + \gamma_{l} N3_{l}$ | + | c N _T | ### **SDHCAL Performance** Multi-threshold mitigate the saturation effects at higher energies and improve the resolution respect to binary. Corrections improve the resolution ### New test beam @ SPS in Dec 2014 Pion & electron energy scan Using Cherenkov information Should help with the PID 2014 TB Data analysis just starting New test beam data periods foreseen for 2015 ### Towards real scale prototypes SDHCAL ILD barrel SDHCAL ILD module ILD SDHCAL Plates up to ~3x.9 m2 Welding? SDHCAL 1m3 prototype 1m3 SDHCAL prototype Plates ~1x1 m2 Bolted R&D on Larger GRPC chambers Electronics Mechanics ### 1m3 Prototype Electronics Electronics readout for the 1m³ prototipo HADROC chip (ASIC) 1m² board → 6 ASUs hosting 24 ASICs Not possible to produce 1m2 PCB (rigidity & planarity conditions needed) 6 smaller boards (ASU-Active Sensor Unit) used 2 ASUs interconnected to form a slab Each slab connected to a DIF DIF sends DAQ commands (config, clock, trigger) to front-end and transfer their signal data to DAQ. It controls also the ASIC power pulsing ### New Electronics - New HARDROC3 (HR3) front end chips - New DIF (developed @ CIEMAT) - Only one DIF per plane - Slow control through the new HR3 I2C bus - Slow Control & Readout by Ethernet - Clock and Synchronization by the TTC system used in LHC experiments Only 1 DIF per plane with small dimensions to fit in the small space available at the final detector ### Absorber mechanical structure The 1m³ mechanical structure was made of 51 stainless steel plates assembled together using lateral spacers fixed to the absorbers through staggered bolts. Thickness tolerance 0.05mm Surface planarity < 0.5 mm → < 1mm for the big plates For the final structure → Welding instead of bolts Allows to decrease the lateral size of the spacer Could introduce deformations ## Absorber mechanical structure - Welding #### **Standard welding:** Could introduce deformations -> Tests to be done @ CIEMAT #### **Electron beam welding:** The **best** but **need vacuum conditions** and could be not affordable for big modules → First test done at CERN #### **Laser welding:** Could have reasonable deformations and is easier (and cheaper) than electron beam welding Electron beam welding ### EBW: Prototype assembly & verification @ CIEMAT # Welding @ CERN - 1. Side A Tack welding, penetration 2mm: 6, 1, 12, 4, 9. - 2. Side B Tack welding, penetration 2mm: 6, 1, 12, 4, 9. - 3. Side B Welding, penetration 5mm: 5, 7, 3, 10. - 4. Side A Welding, penetration 5mm: 5, 7, 3, 10, 2, 11, 8, 6, 1, 12, 4, 9. - 5. Side B Welding, penetration 5mm: 2, 11, 8, 6, 1, 12, 4, 9. # Results after welding Deformation verification measurements after welding are still ongoing but **preliminary results** show deformations below 100 microns in most of cases. One value of ~400microns should be understood and some measurements are still pending. ### Summary - ➤ The 1 m3 prototype shows a good performance that has been improved after applying new energy calibrations: - > Spill time correction - > Track correction - Density correction New beam tests foreseen on 2015 - > R&D for larger modules and towards a final calorimeter is ongoing - A new Detector Interface (DIF) board being developed at CIEMAT Waiting for the new PCB design (french responsibility) - Welding tests ongoing at CIEMAT Electron beam welding test performed. Quality control verification on going