

CALICE SDHCAL Status

M.C Fouz, E. Calvo, J.Marín, J.Puerta, A.Verdugo CIEMAT

XI Meeting of the Spanish Network for Future Linear Colliders. Barcelona 15-16 January 2015

Semi-Digital Hadronic Calorimeter (SDHCAL)

Absorber: Steel (20 mm)

Detector: GRPC (Glass Resistive Plate Chambers) operating in avalanche mode

1x1 cm² pads. Semi-Digital Readout (which and how many pads with signal over a threshold), 2bits - 3 thresholds

Technological prototype

1 pad= 1cm², interpad 0.5 mm

- Large detector (1x1 m²) with almost no dead zones
- Large electronics board
- One-side services
- Self-supporting mechanical structure
- Power-pulsed electronics

Absorber plates
Planarity < 500 μm
Thickness tolerance 50μm

SDHCAL Energy calibration

Triggerless acquisition mode → Time Clustering for event building

It includes also cosmics. Particle identification (muons, electrons, pions) is applied

Energy Reconstruction – Binary mode

$$E_{reco} = (C+D N_{tot}) N_{tot}$$

Allows restoring linearity

C=0.0543, D=0.09x10⁻⁴ Determined from data (Ebeam vs Nhit)

$N_{tot} = N1 + N2 + N3$ Number of pads with signal

N1 = Nhits crossing only the first (lower) threshold

N2 = Nhits crossing the 2nd threshold but not the 3rd

N3 = Nhits crossing the 3rd (higher) threshold

Energy Reconstruction – Multithreshold mode

$$E_{reco} = \alpha N1 + \beta N2 + \gamma N3$$

$$\alpha$$
, β , $\gamma = f(N_{tot})$ (Quadratic function)

 $E_{reco} = \alpha N1 + \beta N2 + \gamma N3$ $\alpha, \beta, \gamma = f(N_{tot}) \text{ (Quadratic function)}$ $\alpha, \beta, \gamma \text{ are obtained by minimizing from a data subsample}$

$$\chi^{2} = \sum_{i=1}^{N} \frac{\left(E_{beam}^{i} - E_{reco}^{i}\right)^{2}}{E_{beam}^{i}}$$

SDHCAL Energy calibration

Time Spill correction

GRPC efficiency decreases at high rate. Efficiency decrease with time in spill due to charge accumulative effects. This can be corrected

Track hits correction.

Single tracks can produce a signal bigger than 2nd or 3rd threshold and can bias the measurement

Identifying those tracks, removing the hits belonging to them from N1,N2,N3 and giving them the same weight can improve the results

$$E_{reco} = \alpha N1' + \beta N2' + \gamma N3' + c N_T$$

Density weighting

Separate the hits in high-density (e.m) and low-density (had) and give different weights Density computed in a volume $1.5(x) \times 1.5(y) \times 3.1 \text{ cm}^3 > 9 \rightarrow \text{High density}$

	High density part		Low density part		Track
E _{reco} =	$\alpha_h N1_h + \beta_h N2_h + \gamma_h N3_h$	+	$-\alpha_{l} N1_{l} + \beta_{l} N2_{l} + \gamma_{l} N3_{l}$	+	c N _T

SDHCAL Performance

Multi-threshold mitigate the saturation effects at higher energies and improve the resolution respect to binary.

Corrections improve the resolution

New test beam @ SPS in Dec 2014

Pion & electron energy scan
Using Cherenkov information
Should help with the PID

2014 TB Data analysis just starting

New test beam data periods foreseen for 2015

Towards real scale prototypes

SDHCAL ILD barrel

SDHCAL ILD module

ILD SDHCAL
Plates up to ~3x.9 m2
Welding?

SDHCAL 1m3 prototype

1m3 SDHCAL prototype Plates ~1x1 m2 Bolted

R&D on

Larger GRPC chambers
Electronics
Mechanics

1m3 Prototype Electronics

Electronics readout for the 1m³ prototipo

HADROC chip (ASIC)

1m² board → 6 ASUs hosting 24 ASICs

Not possible to produce 1m2 PCB (rigidity & planarity conditions needed)

6 smaller boards (ASU-Active Sensor Unit) used

2 ASUs interconnected to form a slab

Each slab connected to a DIF

DIF sends DAQ commands (config, clock, trigger) to front-end and transfer their signal data to DAQ. It controls also the ASIC power pulsing

New Electronics

- New HARDROC3 (HR3) front end chips
- New DIF (developed @ CIEMAT)
- Only one DIF per plane
- Slow control through the new HR3 I2C bus
- Slow Control & Readout by Ethernet
- Clock and Synchronization by the TTC system used in LHC experiments

Only 1 DIF per plane with small dimensions to fit in the small space available at the final detector

Absorber mechanical structure

The 1m³ mechanical structure was made of 51 stainless steel plates assembled together using lateral spacers fixed to the absorbers through staggered bolts.

Thickness tolerance 0.05mm Surface planarity < 0.5 mm

→ < 1mm for the big plates

For the final structure

→ Welding instead of bolts

Allows to decrease the lateral size of the spacer

Could introduce deformations

Absorber mechanical structure - Welding

Standard welding:

Could introduce deformations -> Tests to be done @ CIEMAT

Electron beam welding:

The **best** but **need vacuum conditions** and could be not affordable for big modules

→ First test done at CERN

Laser welding:

Could have reasonable deformations and is easier (and cheaper) than electron beam welding

Electron beam welding

EBW: Prototype assembly & verification @ CIEMAT

Welding @ CERN

- 1. Side A Tack welding, penetration 2mm: 6, 1, 12, 4, 9.
- 2. Side B Tack welding, penetration 2mm: 6, 1, 12, 4, 9.
- 3. Side B Welding, penetration 5mm: 5, 7, 3, 10.
- 4. Side A Welding, penetration 5mm: 5, 7, 3, 10, 2, 11, 8, 6, 1, 12, 4, 9.
- 5. Side B Welding, penetration 5mm: 2, 11, 8, 6, 1, 12, 4, 9.

Results after welding

Deformation verification measurements after welding are still ongoing but **preliminary results** show deformations below 100 microns in most of cases. One value of ~400microns should be understood and some measurements are still pending.

Summary

- ➤ The 1 m3 prototype shows a good performance that has been improved after applying new energy calibrations:
 - > Spill time correction
 - > Track correction
 - Density correction

New beam tests foreseen on 2015

- > R&D for larger modules and towards a final calorimeter is ongoing
 - A new Detector Interface (DIF) board being developed at CIEMAT Waiting for the new PCB design (french responsibility)
 - Welding tests ongoing at CIEMAT
 Electron beam welding test performed. Quality control verification on going