XIth Meeting of the Spanish Network for Future Linear Colliders

Jet reconstruction at Linear Colliders

M.Boronat, J.Fuster, I. García*, E.Ros, M.Vos

IFIC Valencia, Spain

With thanks to Gavin Salam, André Sailer, Jesse Thaler

Introduction

- Jet reconstruction at the ILC is not simply an extension of the LEP/SLC experience
 - higher energy, higher jet multiplicity, more background, better detectors
- After introduction of $\gamma\gamma\to$ hadrons in full simulation, most LC physics studies now use hadron collider algorithms
 - is this the best we can do?

- Time for a critical evaluation...
 - understand impact of jet reconstruction on physics performance
 - -which algorithms are most suitable?

Jet algorithms

Adapt to hadron

colliders

Lepton colliders

JADE 1980s

$$y_{ij} = \frac{E_i^2, E_j^2}{Q^2} (1 - \cos \theta_{ij})$$

Experience on e+edata at Z-pole

Durham or e⁺e⁻ k_t algorithm (LEP and SLC)

$$d_{ij} = 2min(E_i^2, E_j^2)(1 - \cos \theta_{ij})$$

Generalised e⁺e⁻ k_t algorithm

$$d_{ij} = \min(E_i^2, E_j^2)(1 - \cos \theta_{ij})/(1 - \cos R)$$
$$d_{iB} = E_i^2$$

Hadron colliders

$$d_{ij} = \min(p_{Ti}^{2n}, p_{Tj}^{2n}) \Delta R_{ij}^{2n} / R^{2n}$$
$$d_{iB} = p_{Ti}^{2n}$$

n=0: Cambridge-Aachen

n=1: Longitudinally invariant k₊

n=-1: Anti-k, (LHC default)

Include beam distance in e⁺e⁻ algorithms

Time to rethink e⁺e⁻ algorithms!!

Boost invariance at hadron colliders

- At hadron colliders the partons that participate in the hard process generally carry different fractions of the initial hadron energy.
- The final state acquires a substantial Lorentz boost along the beam axis.
 - LHC di-jets: $\beta_z \sim 1$
 - LHC tt: $\beta_7 \sim 0.5$
- Replace the [energy, polar angle] basis by [transverse momentum, rapidity]

Boost invariance at lepton colliders

- Photons emitted by the incoming beam particles (Initial State Radiation) can carry away a significant fractions of the nominal center-of-mass energy
- However for most interesting processes at a future lepton collider ISR plays a much less important role
- At lepton colliders ISR leads to a minor boost
- The basis $[E,\theta]$ is the most natural choice

LC backgrounds

The $\gamma\gamma$ —> hadrons background at CLIC has strong impact on jet reconstruction performance [CLIC CDR, Marshall & Thomson, arXiv:1308.4537]

Less pronounced, but non-negligible impact on ILC physics [many studies, arXiv:1307.8102]

$\gamma\gamma \rightarrow$ hadrons:

- 1. Strongly peaked in the **forward region**
- 2. Background scales with instantaneous luminosity -> Much larger at 3TeV than at 500GeV
- 3. Its impact depends on the bunch structure and detector read-out speed
 - → ILC, 1300 bunches spaced by 500 ns
 - → CLIC, 312 bunches spaced by 0.5 ns

Use CLIC case to take jet reconstruction to the limit; if it works there, it's good for ILC too.

The VLC jet algorithm

A new clustering jet reconstruction algorithm that combines the good features of lepton collider algorithms, in particular the **Durham-like distance criterion**;

$$d_{ij} = min(E_i^{2\beta}, E_j^{2\beta})(1 - \cos \theta_{ij})/R^2$$

with the **robustness against background of** the longitudinally invariant **k**_t **algorithm**

$$d_{iB} = E^{2\beta} \sin^{2\gamma} \theta_{iB}$$

The exponent β allows to **tune** the background rejection level

^{*}In the default settings the two exponents β and γ are equal. For $\beta = \gamma = 1$ the expression simplifies to $d_{iB} = E^2 \sin^2 \theta_{iB} = p_{fi}^2$

Comparison of the distance criteria

Two test particles with constant energy (E = 1 GeV) and fixed polar angle separation (100 mrad)

Beam axis

Comparison of the distance criteria

Two test particles with constant energy (E = 1 GeV) and fixed polar angle separation (100 mrad)

Rotating from central to forward region

Comparison of the distance criteria

The ratio of the inter-particle distance and the beam distance: d_{ij}/d_{iB} drives the robustness to (forward) background: the decision to assign the particle to final-state or beam jets depends on this ratio (and R)

Long. inv. k_t 's robustness is indeed due to its increasing d_{ij}/d_{iB} ratio

VLC with β =1 is similar (by design) to long. inv. k_t

Comparison of the jet sizes

The footprint or area of jets depends on the jet algorithm

Three algorithms that yield a similar, circular area in the central detector produce very different jets in the forward region

ILC realistic benchmark

IFIC/LAL study of ILC lepton+jets tt̄@ 500 GeV, [arXiv:1307.8102]

We consider four jet reconstruction algorithms

- Durham algorithm
- Generic e+e- k_t algorithm with beam jets with R = 1
- Longitudinally invariant k_t algorithm with R = 1.5
- **VLC** algorithm with R =1.2 and β = 0.8.

The choice of parameters corresponds to the optimal setting determined in a scan over a broad range of parameters.

 $t\bar{t} \rightarrow b\bar{b}j_1j_2l\nu$

Durham is affected by $\gamma\gamma$ -> hadrons, longitudinally invariant k, and VLC OK

Resolution on jets reconstruction

Degradation of all jet-related measurements due to $\gamma\gamma \rightarrow$ hadrons background

RMS ₉₀ [GeV]	E_{4j}	E_W	m_W	E_t	m_t
Durham	23.2	19.6	20.3	19.5	21.4
$e^+e^- k_t$	25.6	20.8	21.6	20.5	22.8
long. inv. k_t	21.7	18.4	18.9	18.4	20.1
VLC	21.4	18.0	18.8	18.2	20.0
Four-jet system Hadronic top candid				candidate	

Hadronic W candidate

Durham and e⁺e⁻ k_t are degraded

Long. inv. k_t algorithm and VLC offer better reconstruction for all hadronic observables

CLIC realistic benchmark including background

CLIC di-boson (ZZ) production @ 500 GeV

Reconstruct Particle Flow objects using PANDORA Reconstruct jets (exclusive, n=4) and form Z boson candidates, selecting best jet pairs

Jet energy reconstruction with nominal background much less degraded with algorithms with shrinking footprint (long. Invariant algorithms, VLC) than e⁺e⁻ algorithms (CLIC, high energy)

Jet reconstruction performance

The previous results in numbers: central value, width of the Z-boson mass peak and RMS90

CLIC, $\sqrt{s} = 500$ GeV, no background overlay							
[GeV]	m_Z	σ_Z	RMS ₉₀				
Durham	90.6	5.4	13.8				
long. inv. k_t	90.4	5.3	14.3				
VLC ($\beta = \gamma = 1$)	90.3	5.2	12.5				
CLIC, $\sqrt{s} = 500$ GeV, nominal PFO selection							
[GeV]	m_Z	σ_Z	RMS ₉₀				
Durham	101.1	13.6	28.8				
long. inv. k_t	92.0	9.0	17.2				
VLC ($\beta = \gamma = 1$)	92.5	9.2	16.2				

e⁺e⁻ style algorithm can compete with hadron collider algorithm

Boosted tops at CLIC 3TeV

 $e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}q\bar{q}'q''\bar{q}'''$ (fully hadronic decay)

The VLC algorithm performs significantly better than the classical algorithms, including longitudinally invariant k_t .

Boosted tops at CLIC 3TeV

CLIC, $\sqrt{s} = 3$ TeV, no background overlay							
RMS ₉₀ [%]	E_j (top)	E_j (truth)	m_j				
Durham	5.8	3.7	12				
generic $e^+e^-k_t$	6.2	2.7	4.5				
long. inv. k_t	6.1	2.4	3.4				
VLC	5.9	2.4	3.4				
CLIC, $\sqrt{s} = 3$ GeV, tight PFO selection							
RMS ₉₀ [%]	E_j (top)	E_j (truth)	m_j				
Durham	7.2	5.6	44				
generic $e^+e^-k_t$	6.8	3.4	15				
long. inv. k_t	6.1	2.6	9.9				
VLC	6.0	2.6	6.8				

At higher energy including the $\gamma\gamma$ ->hadrons background, VLC algorithm offers even better resolution than the hadron collider algorithm long. inv. k_t

Conclusions

- γγ → hadrons bkg. forces us to rethink e⁺e⁻ algorithms because old e+ealgorithms are severally degraded
- The VLC jet algorithm retains the natural inter-particle distance criterion for e⁺e⁻ collisions and offers robust performance in the presence of the γγ → hadrons background levels expected at lepton colliders
- Shown to work on several benchmark analyses.
- In the most challenging environment the VLC algorithm has significantly better background rejection than the longitudinally invariant k_t algorithm.
- Pre-print out on the arXiv:
 - Boronat, Fuster, Garcia, Ros, Vos, A robust jet reconstruction algorithm
 for high-energy lepton colliders, arXiv:1404.4294

Thank you for your attention

BACK-UP SLIDES

Background rejection

Algorithm parameters optimisation: R scan

The choice of parameters corresponds to the optimal setting determined in a scan over a broad range of parameters.

Algorithm parameters optimisation: B scan

Boosted top quarks

CLIC 3 TeV (e⁺e⁻ \rightarrow tt e+e⁻ \rightarrow tt⁻ \rightarrow bb⁻qq⁻'q''q''') Without $\gamma\gamma \rightarrow$ hadrons background

CLIC-ILD detector simulation PANDORA PFA

Valencia e⁺e⁻ jet algorithm (N_j =2, R=1, b=1) Could have picked long. inv. k₊ with R=0.8-1.2

Detector performance for boosted hadronic top jets (E~1200 GeV)

- Energy resolution (RMS90) = 2.4%
- Jet mass resolution (RMS90) = 3.2%

Note: resolution considers reconstructed energy versus stable particle jets; relative to the actual top parton the energy resolution is 5% and the width of the mass peak ~7%

Boosted top quarks

CLIC 3 TeV e⁺e⁻ → tt

Adding $\gamma\gamma \rightarrow$ hadrons background

CLIC-ILD detector simulation

PANDORA PFA + quality and timing cuts

Valencia e+e- jet algorithm (N_i =2, R=1, b=1.2)

Significantly better now than long. inv. k_t with R=0.8-1.2

Background has impact on fat jets:

Energy resolution degraded 2.4% → 2.9%

Note: particle jets used to determine resolution do not contain particles from $\gamma\gamma \rightarrow$ hadrons

Boosted top quarks

With $\gamma\gamma \rightarrow$ hadrons background

Background has a profound impact on fat jet substructure:

Raw jet mass resolution badly degraded (from dream 3.2% to nightmare 16%)

Preliminary: grooming jets restores jet mass resolution to ~4% Results correspond to a primitive e⁺e⁻ variant of trimming based on 3+3 Valencia R=0.2 jets → optimisation needed