Linear-mode APDs in standard CMOS

E. Vilella, <u>A. Vilà</u>, O. Alonso, F. Palacio, M. López, A. Diéguez

Electronics Department, University of Barcelona, Martí i Franqués 1, 08208-Barcelona, Spain anna.vila@ub.edu

Outline

- Introduction
 - Introduction to APDs
 - Why linear mode?
- Experimental
 - The device
 - The setup
- Characterization (1 and 2)
- Conclusions

Avalanche PhotoDiode - APD

e--h+ pair generation due to:

- > External interaction:
 - Photon absoption
 - Minimum Ionizing Particle
- ➤ Noise:
 - Thermal release of charge
 - Tunnel effect

Operation modes

- An average field value of 3·10⁵ V/cm is required to create one electron-hole pair per 1 micron travelled.
- Below the breakdown voltage, ionization rates balanced by extraction rate → carrier concentration & output current have finite gain, M (*10 - *100). Linear APDs
- For bias beyond breakdown, very high ionization rates → carrier concentration
 & current virtually infinite (M > 10⁶).
 Geiger APDs, also known as SPADs

Why APDs?

- APD technology offers ideal properties for photon sensing applications:
 - low noise
 - high speed
- Geiger-mode APDs (SPADs) provide
 - high sensitivity
 - good energy resolution
 - digital answer
- SPADs have been monolithically integrated in standard CMOS processes.

Why linear mode?

- Linear-mode APDs allow (additionally)
 - determining the number of incident photons with great precision
 - low noise levels even at room temperature
 - demodulation together with detection
- Mainly manufactured by means of dedicated processes
 - cost consuming
 - poor reliability
 - high bias voltages to operate (typically between 100-200 V)
 - relatively low multiplication gains

We introduce a linear-mode APD fabricated in a standard 0.35 µm CMOS process for obtaining high multiplication gains.

Useful in several application domains such as image sensors, optical communications and quantum information.

Merit figures in linear mode

- As usual for other photodiodes:
 - quantum efficiency
 - dark current
 - bandwidth
 - gain
 - •
- Statistical nature of impact ionization →
 actual number of e-h pairs per photon varies →
 multiplication noise higher than shot noise*M →
 Excess noise factor F = f (M,k) (McIntyre, 1966)

State-of-the-art

Reference	Node (μm)	Type	Guard ring	V _{APD} (V)	QE (%)	F @ M = 20
Biber 2001	2	p+/n-well	p- base	42	40@500nm	36000 @ 635nm
Biber 2001	2	n+/p-well	n-well	80	75@65onm	1800 @ 635nm
Rochas 2002	0,8	p+/n-well	p-well	19,5	50@470nm	7 @ 400nm
Stapels 2007	0,8	n+/p-well	n-well	n.a.	>60@700nm	5 @ 47onm
Stapels 2007	0,8	p+/n-well	p-tub	25	50@550nm	50 @ 470nm
Kim 2008	0,7	n+/p-well	virtual	11	30@650nm	n.a.
Panchieri 2008	0,35 Avalanche	p+/n-well	p-well	10,8 MOS tech	23@48onm	4,5 @ 38onm 6 @ 56onm

in "Advances in Photodiodes" InTech Ed. (2010)

The device

HV-AMS 0.35 μm CMOS process, without modifications through a MPW service by Europractice (20 μm x 100 μm).

Deep n-tub implantation (cathode) biased slightly below V_{BD}.

Photocurrent measured at the p+ implantation (anode).

Characterization 1

Complete setup

- A software self-developed in Matlab is used to receive and store the experimental data, in addition to control the power source (model N6705A by Agilent Technologies) by means of an Ethernet cable.
- To show the potential of this technology, the linear-mode APD was illuminated with an 880 nm LED (model SFH 485 by Siemens) at several optical powers.
- The experimental set-up was placed inside a black box to avoid any uncontrolled light sources.

Dark current & gain

Breakdown voltage = 18.72 V.

Dark current = 1.2 nA for M = 12 and 2.9 nA for M = 21.

Normalized dark current density = 1450 nA/mm² (x200 what is reported for CMOS APDs at the same gain).

Maximum M = 1700 (@ 18.70 V).

Photocurrent

Excellent linearity

Increasing with M, and then with V_{HV}

Spectral response

Good detection for 500-1000 nm.

Minima for 350 and 1100 nm (425 and 1075 nm for reduced area)

Characterization 2

VCSEL array by eMCORE (850 nm) + LPC662 by TI

Integrating the current

APD pulsed with $t_{on} = 3$ ms and $V_{HV} = 18.7$ V, only once. VCSEL continuously ON. $C_{FB} = 100$ nF. Uniform variation.

APD biased to 18.7 V. VCSEL pulsed (green, active time is 10 ms approx.) with 135 mA. $C_{FB} = 100$ nF.

Integrated current

- dV/dt linear with the intensity at the VCSEL.
- Large variation with biasing at the APD.

High range precision

Conclusion

- A linear-mode APD fabricated in a conventional 0.35 μm
 CMOS process is reported and characterized.
- The experimental characterization shows high multiplication gains and excellent linearity between the incident optical power and the generated photocurrent.
- Linear-mode APDs fabricated in standard CMOS processes can be used for effectively counting the number of incident photons in many applications

Acknowledgments

This work has received funding from the Spanish National Program for Particle Physics under

- Grant FPA2008-05979-C04-02 and
- Grant FPA2010-21549-C04-01,

and also from the European Commission within the Programme FP7-KBBE and reference 614168.

Thankyou

• Questions?