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Avalanche PhotoDiode - APD
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S. Sze 1981 “Physics of semiconductor devices”

e--h+ pair generation due to:
 External interaction:
 Photon absoption
 Minimum Ionizing Particle

Noise:
 Thermal release of charge
 Tunnel effect



Operation modes
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• Below the breakdown voltage, ionization rates balanced by
extraction rate  carrier concentration & output current
have finite gain, M (*10 - *100). Linear APDs

• An average field value of 3·105 V/cm is required to create one
electron-hole pair per 1 micron travelled.

• For bias beyond breakdown, very high
ionization rates carrier concentration
& current virtually infinite  (M > 106).
Geiger APDs, also known as SPADs



Why APDs?
 APD technology offers ideal properties for photon sensing

applications:
 low noise

 high speed

 Geiger-mode APDs (SPADs) provide
 high sensitivity

 good energy resolution

 digital answer

 SPADs have been monolithically integrated in standard
CMOS processes.
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Why linear mode?
 Linear-mode APDs allow (additionally)

 determining the number of incident photons with great precision

 low noise levels even at room temperature

 demodulation together with detection

 Mainly manufactured by means of dedicated processes
 cost consuming

 poor reliability

 high bias voltages to operate (typically between 100-200 V)

 relatively low multiplication gains
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We introduce a linear-mode APD fabricated in a
standard 0.35 μm CMOS process for obtaining high

multiplication gains.

Useful in several application domains such as image
sensors, optical communications and quantum

information.
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Merit figures in linear mode
 As usual for other photodiodes:
 quantum efficiency
 dark current
 bandwidth
 gain
 …

 Statistical nature of impact ionization 
actual number of e-h pairs per photon varies 
multiplication noise higher than shot noise*M 
Excess noise factor F = f (M,k) (McIntyre, 1966)
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State-of-the-art
Reference Node

(μm)
Type Guard

ring
VAPD
(V)

QE
(%)

F @ M = 20

Biber 2001 2 p+/n-well p-
base

42 40@500nm 36000 @
635nm

Biber 2001 2 n+/p-well n-well 80 75@650nm 1800 @ 635nm

Rochas 2002 0,8 p+/n-well p-well 19,5 50@470nm 7 @ 400nm

Stapels 2007 0,8 n+/p-well n-well n.a. >60@700nm 5 @ 470nm

Stapels 2007 0,8 p+/n-well p-tub 25 50@550nm 50 @ 470nm

Kim 2008 0,7 n+/p-well virtual 11 30@650nm n.a.

Panchieri 2008 0,35 p+/n-well p-well 10,8 23@480nm 4,5 @ 380nm
6 @ 560nm
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G.F. Dalla Betta et al., “Avalanche photodiodes in submicron CMOS technologies for high-sensitivity imaging”
in  “Advances in Photodiodes” InTech Ed. (2010)



The device
HV-AMS 0.35 μm CMOS process, without modifications through a MPW
service by Europractice (20 μm x 100 μm).
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Deep n-tub
implantation
(cathode) biased
slightly below VBD.

Photocurrent
measured at the p+
implantation
(anode).



Characterization 1
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amplification system + digital data transfer

LPC662 by Texas Instruments + PIC32MX795 by Microchip

TIA Inverter ADC



Complete setup
 A software self-developed in Matlab is used to receive and

store the experimental data, in addition to control the
power source (model N6705A by Agilent Technologies) by
means of an Ethernet cable.

 To show the potential of this technology, the linear-mode
APD was illuminated with an 880 nm LED (model SFH 485
by Siemens) at several optical powers.

 The experimental set-up was placed inside a black box to
avoid any uncontrolled light sources.
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Dark current & gain
Breakdown voltage =
18.72 V.

Dark current = 1.2 nA
for M = 12 and 2.9 nA
for M = 21.

Normalized dark
current density = 1450
nA/mm2 (x200 what is
reported for CMOS
APDs at the same
gain).

Maximum M = 1700
(@ 18.70 V).
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Photocurrent

Excellent linearity

Increasing with M,
and then with VHV
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Spectral response
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Good
detection
for 500-
1000 nm.

Minima
for 350
and 1100
nm (425
and 1075
nm for
reduced
area)



Characterization 2
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lightning + integrator

VCSEL array by eMCORE (850 nm) + LPC662 by TI



Integrating the current
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APD pulsed with ton = 3 ms
and VHV = 18.7 V, only once.
VCSEL continuously ON.
CFB = 100 nF. Uniform
variation.

APD biased to 18.7 V. VCSEL
pulsed (green, active time
is 10 ms approx.) with 135
mA. CFB = 100 nF.



Integrated current
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• dV/dt linear with the intensity at the VCSEL.

• Large variation with biasing at the APD.



High range precision
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Conclusion
 A linear-mode APD fabricated in a conventional 0.35 μm

CMOS process is reported and characterized.

 The experimental characterization shows high
multiplication gains and excellent linearity between the
incident optical power and the generated photocurrent.

 Linear-mode APDs fabricated in standard CMOS
processes can be used for effectively counting the number
of incident photons in many applications
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Questions?
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