Transverse Instabilities Studies for the SLS-2 Upgrade

E. Koukovini-Platia (CERN, EPFL)
Many thanks to M. Aiba, G. Rumolo, A. Streun

Introduction

- Collective effects will be crucial for the SLS-2 upgrade
- Lattices considered have a very low and negative momentum compaction factor
- Narrow NEG coated pipes
- Vacuum chamber:
- Round
- Material: copper
- Radius: 10 mm
- NEG coated everywhere (1 $\mu \mathrm{m}$ assumed)

2 RF options: 500 and 100 MHz

- Check the matching in longitudinal plane
- $M=R_{o}|\eta|\left(\delta p / p_{0}\right) /\left(Q_{s} \sigma_{z}\right)$
- $1^{\text {st }}$ RF scenario: 500 MHz
- M=1.44 \rightarrow not matched
- $2^{\text {nd }}$ RF scenario: 100 MHz
- $\mathrm{M}=0.99 \rightarrow$ matched \rightarrow Simulations with 100 MHz parameters

Parameters for 100 MHz

$E(\mathrm{GeV})$	2.4
$C(\mathrm{~m})$	288
α_{p}	-5.4×10^{-5}
$\varepsilon_{x}{ }^{\mathrm{g}}(\mathrm{pm})$	73
$\varepsilon_{\mathrm{y}}{ }^{\mathrm{g}}(\mathrm{pm})$	5
$\mathrm{v}_{\mathrm{x}} / \mathrm{v}_{\mathrm{y}}$	$39.4 / 13.17$
v_{s}	0.00037
$\sigma_{z}(\mathrm{~mm})^{*}$	7.4
Y	4700
$\mathrm{~V}_{\mathrm{RF}}(\mathrm{MV})$	0.7
h	96
$\delta \mathrm{p} / \mathrm{p}_{0}$	0.0011

N_{p}	3.1×10^{10}
$\left\langle\mathrm{~b}_{\mathrm{x}}\right\rangle(\mathrm{m})$	6.65
$\left\langle\mathrm{~b}_{\mathrm{y}}\right\rangle(\mathrm{m})$	6.13
$\mathrm{~T}_{\mathrm{x}}(\mathrm{ms})$	5.58
$\mathrm{~T}_{\mathrm{y}}(\mathrm{ms})$	7.56

> * Bunch length is without IBS/ 3 HC. A 3HC will be considered to lengthen the bunch by a factor of 3

Resistive wall (ImpedanceWake2D code*)

```
Number of layers: 2
Layer 1 inner radius in mm: 10
Layer 1 DC resistivity (Ohm.m): 9.1e-7 -> NEG (assumed \sigma=1.1\times10 }\mp@subsup{}{}{\mathbf{6}}\mathbf{ S/m
Layer 1 relaxation time for resistivity (ps): 0.
Layer 1 real part of dielectric constant: 1
Layer }1\mathrm{ magnetic susceptibility: 0
Layer 1 relaxation frequency of permeability (MHz): Infinity
Layer 1 thickness in mm: 0.001
Layer 2 DC resistivity (Ohm.m): 1.68e-8 -> Copper (\sigma=5.95x107 S/m)
Layer 2 relaxation time for resistivity (ps): 0.
Layer 2 real part of dielectric constant: 1
Layer 2 magnetic susceptibility: 0
Layer 2 relaxation frequency of permeability (MHz): Infinity
Layer 2 thickness in mm: Infinity
```


HEADTAIL* simulations for RW: 0 chromaticity

*G. Rumolo, F. Zimmermann, CERN-SL-Note-2002-036 (2002)

- Varying the bunch intensity (nominal value 3.1×10^{10})
- Already unstable just with the resistive wall
- Stable for $\mathrm{N}_{\mathrm{p}}<1.24 \times 10^{10}$
(2.5 lower than the desired)

HEADTAIL simulations for RW: 0 chromaticity and $3 H C\left(\sigma_{z}=22.2 \mathrm{~mm}, \mathrm{Q}_{\mathrm{s}}=1.2 \times 10^{-4}\right)$

- Unstable with just the resistive wall

-Becomes stable for $N_{p}<0.93 \times 10^{10}$ (even lower threshold than without the 3 HC due to the smaller $\mathrm{Q}_{\mathrm{s}}{ }^{\prime}$
-Operation at 0 chromaticity is not an option (current 2.5 smaller to be stable ONLY with RW)

HEADTAIL simulations for RW: positive chromaticity

Q'y	Rise time $[\mathrm{ms}]$
1	1.9
2	1.6
3	1.2
5	1

- Need to compare the rise time of the instability with the damping time, $\mathrm{T}_{\mathrm{y}}=7.56$ ms
-Unstable for positive chromaticities

HEADTAIL simulations for RW: negative chromaticity

Q'y	Rise time $[\mathrm{ms}]$
-0.5	13.6
-0.6	18.5

- Need to compare the rise time of the instability with the damping time, $\mathbf{r}_{\mathbf{y}}=\mathbf{7 . 5 6}$ ms
-Stable for negative chromaticities

Broad-Band Resonator Parameters

- TM cut-off frequency: $\lambda=2 \pi r / p_{m n}=2 \pi^{*}(10 \mathrm{~mm}) / 2.405 \rightarrow$ $\mathrm{f}=\mathrm{c} \backslash \lambda=11.5 \mathrm{GHz}$
- TE cut-off frequency: $\lambda=2 \pi r / p_{m n}^{\prime}=2 \pi^{*}(10 \mathrm{~mm}) / 1.841 \rightarrow$ $\mathrm{f}=\mathrm{c} \backslash \lambda=8.8 \mathrm{GHz}$
- BBR: $f_{r}=8 \mathrm{GHz}, \mathrm{Q}=1$
- \mathbf{R}_{s} is the parameter to scan
- Impedance Model: RW+BBR

Impedance Budget for $Q_{y}^{\prime}=-1(R W+B B R)$

Rs $[\mathbf{k} \Omega / \mathbf{m}]$	Rise time [ms]
40	$7.49<7.56=\mathrm{T}_{\mathrm{y}}$
50	$6.4<7.56=\mathrm{T}_{\mathrm{y}}$
100	$3.1<7.56=\mathrm{T}_{\mathrm{y}}$

Remaining transverse budget in y : $<40 \mathrm{k} \Omega / \mathrm{m}$

Impedance Budget (RW+BBR)

Q'y	Rs $[\mathbf{k} \Omega / \mathbf{m}]$	Rise time $[\mathbf{m s}]$	
-5	500	5.96	
-6	500	$7.67>7.56=\mathrm{T}_{\mathrm{y}}$	
-7	500	$8>7.56=\mathrm{T}_{\mathrm{y}}$	

-Operation with higher negative chromaticity than -6 will allow a budget of $0.5 \mathrm{M} \Omega / \mathrm{m}$

Conclusions

- Operation at 0 chromaticity: at least 2.5 lower bunch population to be stable (impedance model only RW)
- Negative chromaticity: The beam is stable with nominal parameters and only RW
- How negative? Depends on the total budget (RW+other elements+BBR)
- Need higher negative chromaticity than -6 to have $0.5 \mathrm{M} \Omega / \mathrm{m}$ available
- Large tune footprint, limit dynamic aperture and Touschek lifetime

