Transverse Instabilities Studies for the SLS-2 Upgrade

E. Koukovini-Platia (CERN, EPFL) Many thanks to M. Aiba, G. Rumolo, A. Streun

Introduction

- Collective effects will be crucial for the SLS-2 upgrade
- Lattices considered have a very low and negative momentum compaction factor
- Narrow NEG coated pipes
- Vacuum chamber:
 - Round
 - Material: copper
 - Radius: 10 mm
 - NEG coated everywhere (1 µm assumed)

2 RF options: 500 and 100 MHz

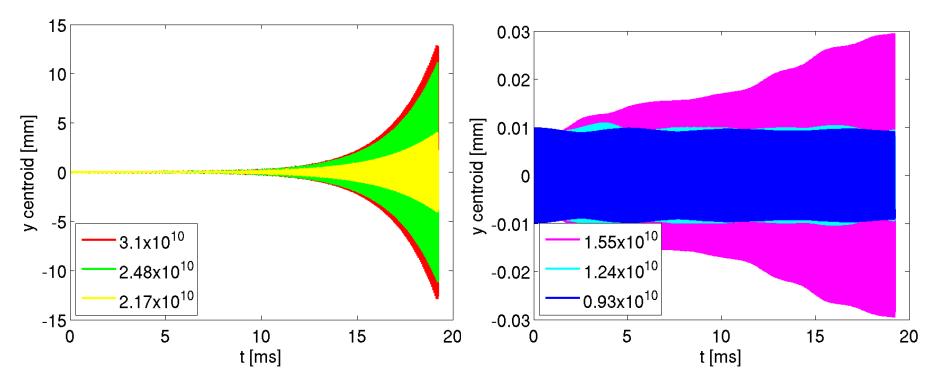
- Check the matching in longitudinal plane
- $M=R_o |\eta| (\delta p/p_0)/(Q_s \sigma_z)$
- 1st RF scenario: 500 MHz
 - M=1.44 → not matched
- 2nd RF scenario: 100 MHz
 - M= 0.99 \rightarrow matched \rightarrow <u>Simulations with 100 MHz parameters</u>

Parameters for 100 MHz

E (GeV)	2.4	
C (m)	288	
α _p	-5.4x10 ⁻⁵	
ε _x ^g (pm)	73	
ε _y g (pm)	5	
v _x /v _y	39.4 / 13.17	
V _s	0.00037	
σ _z (mm)*	7.4	
γ	4700	
V _{RF} (MV)	0.7	
h	96	
δp/p ₀	0.0011	

N _p	3.1x10 ¹⁰
<b<sub>x> (m)</b<sub>	6.65
<b<sub>y> (m)</b<sub>	6.13
τ _x (ms)	5.58
т _у (ms)	7.56

* Bunch length is without IBS/ 3HC. A 3HC will be considered to lengthen the bunch by a factor of 3

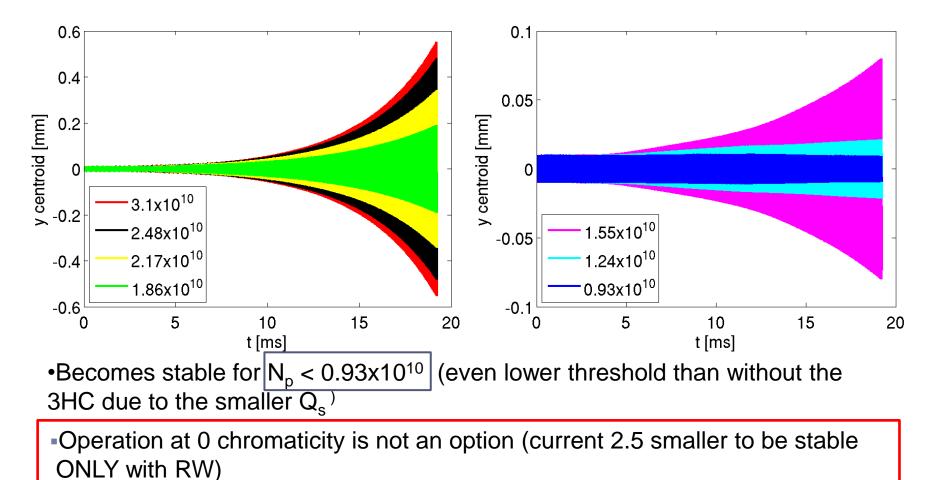

Resistive wall (ImpedanceWake2D code*)

Number of layers: 2 Layer 1 inner radius in mm: 10 Layer 1 DC resistivity (Ohm.m): 9.1e-7 \rightarrow NEG (assumed σ =1.1x10⁶ S/m) Layer 1 relaxation time for resistivity (ps): 0. Layer 1 real part of dielectric constant: 1 Layer 1 magnetic susceptibility: 0 Layer 1 relaxation frequency of permeability (MHz): Infinity Layer 1 thickness in mm: 0.001 Layer 2 DC resistivity (Ohm.m): 1.68e-8 \rightarrow Copper (σ =5.95x10⁷ S/m) Layer 2 relaxation time for resistivity (ps): 0. Layer 2 real part of dielectric constant: 1 Layer 2 magnetic susceptibility: 0 Layer 2 relaxation frequency of permeability (MHz): Infinity Layer 2 thickness in mm: Infinity

*N. Mounet, CERN-THESIS-2012-055

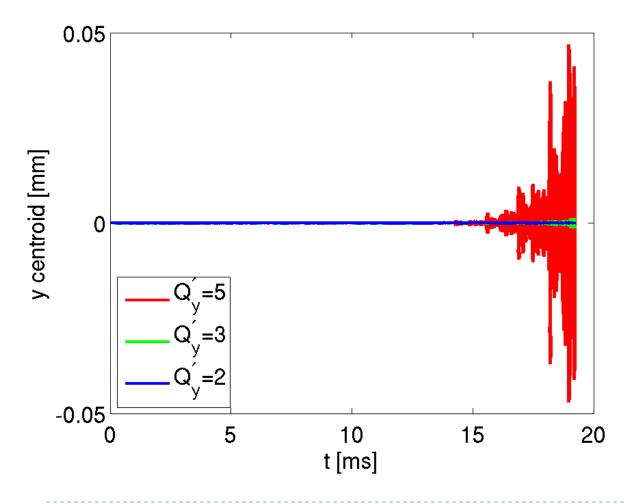
HEADTAIL* simulations for RW: 0 chromaticity

*G. Rumolo, F. Zimmermann, CERN-SL-Note-2002-036 (2002)


- Varying the bunch intensity (nominal value 3.1x10¹⁰)
- Already unstable just with the resistive wall

6

• Stable for $N_p < 1.24 \times 10^{10}$ (2.5 lower than the desired)


HEADTAIL simulations for RW: 0 chromaticity and 3HC (σ_z =22.2 mm, Q_s=1.2x10⁻⁴)

Unstable with just the resistive wall

HEADTAIL simulations for RW: positive chromaticity

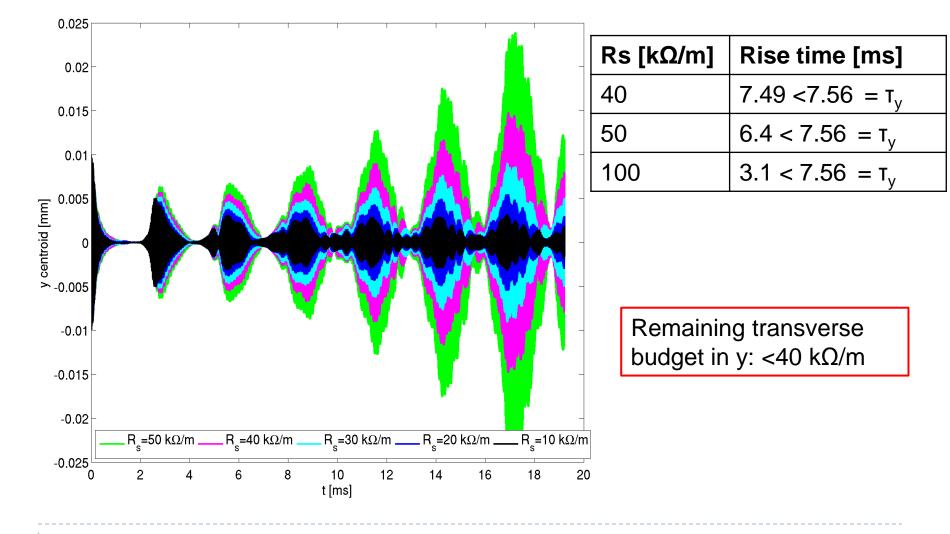
Q'y	Rise time [ms]	
1	1.9	
2	1.6	
3	1.2	
5	1	

•Need to compare the rise time of the instability with the damping time, $\tau_y=7.56$ ms

•Unstable for positive chromaticities

HEADTAIL simulations for RW: negative chromaticity

Q'y	Rise time [ms]	
-0.5	13.6	
-0.6	18.5	


•Need to compare the rise time of the instability with the damping time, $\tau_y=7.56$ ms

•Stable for negative chromaticities

Broad-Band Resonator Parameters

- TM cut-off frequency: λ=2πr/p_{mn}=2π*(10mm)/2.405 → f=c\λ=11.5 GHz
- TE cut-off frequency: λ=2πr/p'_{mn}=2π*(10mm)/1.841 → f=c\λ=8.8 GHz
- BBR: f_r= 8 GHz, Q=1
- R_s is the parameter to scan
- Impedance Model: RW+BBR

Impedance Budget for Q'_v=-1 (RW+BBR)

Impedance Budget (RW+BBR)

Q'y	Rs [kΩ/m]	Rise time [ms]	
-5	500	5.96	
-6	500	$7.67 > 7.56 = T_y$ -	 Slower instability than
-7	500	$8 > 7.56 = T_y$ -	the damping mechanism •Stable

-Operation with higher negative chromaticity than -6 will allow a budget of 0.5 $\ensuremath{M\Omega/m}$

Conclusions

- Operation at 0 chromaticity: at least 2.5 lower bunch population to be stable (impedance model only RW)
- Negative chromaticity: The beam is stable with nominal parameters and only RW
- How negative? Depends on the total budget (RW+other elements+BBR)
- Need higher negative chromaticity than -6 to have 0.5 M Ω/m available
- Large tune footprint, limit dynamic aperture and Touschek lifetime