Spontaneously breaking space-time: Poincare, gravity, cosmology, and spinning objects
 Solomon Endlich
 EPFL

...or how I learned to stop worrying and love the coset construction

1)

SSB of space-time symmetries + coset construction
2)

Gravity from the coset perspective
3) Example: Spinning object
4) Example: Cosmology

> Act 1:
> The Spontaneous breaking of space-time symmetries

Observation:

Experiments

laws of physics Poincaré invariant!

Experience

"stuff" is not

spontaneously breaks Poincaré

Consider the (point-like) Lobster:

$$
x^{\mu}=(t, 0,0,0)
$$

$$
\text { Unbroken }=\left\{\begin{array}{c}
P_{0} \\
J_{i j}
\end{array}\right.
$$

$$
\text { Broken }=\left\{\begin{array}{l}
P_{i} \\
J_{0 i} \equiv K_{i}
\end{array}\right.
$$

spatial translations boosts

Consider the (point-like) Lobster:

usual treatment:

perturb w/ constraint:

$$
\eta_{\mu \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}=-1
$$

$-m \int d \tau=-m \int d \lambda \sqrt{-\eta_{\mu \nu} \frac{d x^{\mu}}{d \lambda} \frac{d x^{\nu}}{d \lambda}}$

Consider the (point-like) Lobster:

Is there a way to construct the theory for the Goldstones (fluctuations) based on the symmetry breaking pattern alone?

Almost!*

*Ivanov and Ogievetsky 1970's

more recent literature:

- Neilson and Chadha (1976)
- Schäfer, Son, Stephanov, Toublan, and Verbaarschot hep-ph/0108210 (2001)
- Low and Manohar hep-th/0110285 (2002)
- Watanabe and Brauner 1109.6327 (2011)
- Nicolis, and Piazza 1112.5174 (2011)
- Watanabe and Murayama 1203.0609 (2012)
- Hidaka 1203.1494 (2012)
- Nicolis, Penco, Piazza, and Rosen 1306.1240 (2013)
- Endlich, Nicolis, and Penco 1310.2272 (2013)
- Endlich, Nicolis, and Penco 1311.6491 (2013)
- Brauner, Endlich, Monin, and Penco 1407.7730 (2014)
- Nicolis, Penco, Piazza, and Rattazzi 1501.03845 (2015)
- etc.

Why "almost" (classic interpretation)?

one usually hears that:

$N_{\text {Broken Generators }} \neq N_{\text {Goldstones }}$

$$
\begin{aligned}
\delta \mathcal{O}(x)= & i \sum_{I} \pi_{I}(x) T_{I}\langle\mathcal{O}(x)\rangle \\
? & \sum_{I} \pi_{I}(x) T_{I}\langle\mathcal{O}(x)\rangle=0
\end{aligned}
$$

not independent fluctuations
eliminate redundancy via "inverse Higgs constraint"

Ex.

$$
\text { Unbroken }=\left\{\begin{array}{l}
P_{0} \\
J_{i j}
\end{array}\right.
$$ spatial rotations

$$
\text { Broken }=\left\{\begin{array}{l}
P_{i} \\
J_{0 i} \equiv K_{i}
\end{array}\right.
$$

spatial translations boosts

time-dependent boost

time-dependent translation

$$
\begin{gathered}
\pi_{\text {boost }} K+\pi_{\text {trans }} P=0 \\
\pi_{\text {boost }} \sim \frac{d}{d t} \pi_{\text {trans }}
\end{gathered}
$$

same information
(however...can have no redundancy: choice?)

- $M_{\text {Goldstone }} \neq 0$ (read: gap)

work here...
...or here

basic construction: 1

1) identify symmetry breaking pattern

$$
G \rightarrow H
$$

2) build objects out of Goldstones that transform linearly*

$$
\mathcal{D} \pi \rightarrow h(g, \pi) \mathcal{D} \pi
$$

*along the lines of Callan, Coleman, Wess and Zumino + Volkov

basic construction: 2

3) Inverse Higgs constraints (algebra) $[\bar{P}, X]=X^{\prime}+\ldots$
=> structure of covariant derivatives

$$
\mathcal{D} \pi=0 \Longrightarrow \pi\left(\partial \pi^{\prime}\right)
$$

can impose: should? necessary? depends...
4) build a Lagrangian out of H invariant objects made up of $\mathcal{D} \pi^{a}$

CCWZ construction generalized to space-time symmetries:

Expanding the magical step 2)

क organize $G\left\{\begin{array}{l}X_{\alpha}=\text { broken generators } \\ \bar{P}_{a}=\text { unbroken translations } \\ \left.T_{A}=\text { other unbroken generators }\right) H_{0}\end{array}\right.$
parametrize the coset

$$
\Omega(y, \pi) \equiv e^{i y^{a}(x) \bar{P}_{a}} e^{i \pi^{\alpha}(x) X_{\alpha}}
$$

$$
g \Omega(y, \pi)=\Omega\left(y^{\prime}, \pi^{\prime}\right) h(y, \pi, g)
$$

Expanding the magical step 2) ... part 2

- Maurer-Cartan form $\Omega^{-1} d \Omega$

$$
\left.\Omega^{-1} \partial_{\mu} \Omega=E_{\mu}^{a}\right)\left(\bar{P}_{a}+\left(\nabla_{a} \pi^{\alpha}\right) X_{\alpha}+\left(A_{a}^{B} \bar{\Gamma}_{B}\right)\right.
$$

transforms as a vierbein transforms $d^{4} x \operatorname{det} E$ as a covariant

transforms

as a connection derivative

$$
\nabla_{a} \pi^{\alpha}(x) \quad \xrightarrow{g} \quad \nabla_{a} \pi^{\prime \alpha}(x)=h_{a}{ }^{b}(y, \pi, g) h_{\beta}^{\alpha}(y, \pi, g) \nabla_{b} \pi^{\beta}(x)
$$

$$
\Longrightarrow \nabla_{a}^{H} \equiv\left[\left(E^{-1}\right)_{a}^{\mu} \partial_{\mu}+i A_{a}^{B} T_{B}\right]
$$

Act 2:

Gravity from the coset perspective

Gauge symmetries

rule of thumb (CCWZ):

$$
\Omega^{-1} \partial_{\mu} \Omega \quad \rightarrow \quad \Omega^{-1} D_{\mu} \Omega \equiv \Omega^{-1}\left(\partial_{\mu}+i \tilde{A}_{\mu}^{I} V_{I}\right) \Omega
$$

can we do the same for space-time symmetries?

Gravity as

"gauged ISO(3,1) with non-linearly

 realized translations"1) non-linearly realized translations
2) $\Omega \equiv e^{i y^{a}(x) P_{a}}$

$$
\Omega^{-1} D_{\mu} \Omega \equiv e^{-i y^{a}(x) P_{a}}\left(\partial_{\mu}+i \tilde{e}_{\mu}^{a} P_{a}+\frac{i}{2} \omega_{\mu}^{a b} J_{a b}\right) e^{i y^{a}(x) P_{a}}
$$

$$
=i e_{\mu}{ }^{a} P_{a}+\frac{i}{2} \omega_{\mu}^{a b} J_{a b}
$$

"spin" connection

$$
e_{\mu}{ }^{a}=\partial_{\mu} y^{a}+\tilde{e}_{\mu}{ }^{a}+\omega_{\mu}^{a b} y_{b} \text { vierbein }
$$

all we have is:

$$
\nabla_{a}^{L} \equiv\left(e^{-1}\right)_{a}^{\mu}\left(\partial_{\mu}+\frac{i}{2} \omega_{\mu}^{b c} J_{b c}\right)
$$

4) $S=\int d^{4} x \operatorname{det} e \mathcal{L}\left(\nabla_{a}^{L}\right) \quad$ GR?

- $\left[\nabla_{a}^{L}, \nabla_{b}^{L}\right] V^{c}=R_{d a b}^{c} V^{d}-T_{a b}{ }^{d} \nabla_{d}^{L} V^{c}$
$\Rightarrow S=-\frac{1}{16 \pi G} \int \operatorname{det}(e) d^{4} x\left[R^{a b}{ }_{a b}+\sum_{i}^{3} c_{i} T^{2}+\cdots\right]$

$$
\frac{\delta S}{\delta \omega_{\mu}^{a b}}=0 \Rightarrow \omega(e) \sim e^{-1} \partial e+\ldots
$$

$$
T_{a b}{ }^{c}=0 \quad \text { torsion free! } \quad \text { GR! (as EFT) }
$$

Act 3:

Spinning object

Utilizing the coset

1) SSB pattern:

Unbroken $= \begin{cases}P_{0} & \text { time translations } \\ J_{i j}=S_{i j}+J_{i j} & \text { residual rotations }\end{cases}$

$$
\text { Broken }=\left\{\begin{array}{c}
P_{i} \\
J_{a b}
\end{array}\right.
$$

spacial translations rotations and boosts

with $\quad S \subseteq S O(d)$

2) with $\quad \Omega=e^{i y^{a} P_{a}} e^{i \alpha_{a b} J^{a b} / 2}$

$$
\dot{x}^{\mu} \Omega^{-1} D_{\mu} \Omega=i E\left(P_{0}+\nabla \pi^{i} P_{i}+\frac{1}{2} \nabla \alpha_{c d} J^{c d}\right)
$$

Utilizing the coset

$$
\begin{aligned}
E & =\dot{x}^{\nu} e_{\nu}^{a} \Lambda_{a}^{0} \\
\nabla \pi^{i} & =E^{-1} \dot{x}^{\nu} e_{\nu}^{a} \Lambda_{a}^{i} \\
\nabla \alpha^{a b} & =E^{-1}\left(\Lambda_{c}^{a} \dot{\Lambda}^{c b}+\dot{x}^{\mu} \omega_{\mu}^{c d} \Lambda_{c}^{a} \Lambda_{d}^{b}\right)
\end{aligned}
$$

with $\quad \Lambda(\alpha)=\Lambda(\eta) \Lambda(\xi)$
3) as $\left[\bar{P}_{0}, K_{i}\right] \sim P_{i}$

boost into rest frame accompanying rotating object

Utilizing the coset

4) build the action

$$
\begin{array}{r}
S=\int d \lambda E\left(-m+\frac{I_{i j k l}}{4} \nabla \alpha^{i j} \nabla \alpha^{k l}+\cdots\right) \\
\text { with } \nabla \alpha=\Lambda^{-1} d_{\tau} \Lambda+u^{\mu} \Lambda^{-1} \omega_{\mu} \Lambda
\end{array}
$$

EFT describing rotating object coupled to gravity (as advertised)

Reality check

Turn OFF gravity... what do we get?

- $\int d t \frac{1}{2} I_{i j} \Omega^{i} \Omega^{j}+\cdots \quad \begin{aligned} & \text { correct leading } \\ & \text { kinetic energy }\end{aligned}$
- $\frac{\delta}{\delta \xi^{i}}(\cdots)=0$

Euler equations

- What about the . . . 's?

Meaning of higher derivative terms

Real objects are NOT perfectly rigid... they distort under stress

Dimensionally $S \nabla \alpha^{4} \sim S \Omega^{4} \sim\left(\frac{\Omega^{2}}{\omega_{0}^{2}}\right)\left(I \Omega^{2}\right)$

For some "elastic" object EFT tells you ω_{0} related to modes we have integrated out... the normal modes!

Generalized Euler (in 3 d):

$$
\begin{aligned}
\partial_{t} \Omega= & I^{-1}((I \Omega) \times \Omega)+I^{-1}((S \Omega \Omega \Omega) \times \Omega) \\
& +I^{-1}(S \Omega \Omega)((I \Omega) \times \Omega)+\mathcal{O}\left(S \Omega^{2} / I\right)^{2}
\end{aligned}
$$

Ex:
Spherical chunk of cubic crystal rotating off axis
"spherical chunk"

$I \sim \delta$
"cubic crystal"
$\Rightarrow S \sim \delta \delta+$ cubic here $\Rightarrow \partial_{t} \Omega=I^{-1}((S \Omega \Omega \Omega) \times \Omega)+\mathcal{O}\left(S \Omega^{2} / I\right)^{2}$

Precession!
precession of angular velocity (as viewed in body frame)

... for some random input values
is this known?

Coupling to gravity

Additional vertices, such as

- $\frac{1}{4 M_{P l}} L^{k} \epsilon^{k i j} \partial^{i} h_{0}{ }^{j}$
$\bigcirc \sim \frac{1}{M_{P l}^{2}} L^{k} \epsilon^{k i j}\left[h^{i \lambda} \partial_{\lambda} h_{0}{ }^{j}+\cdots\right]$

where $L=\Lambda(\xi)\left(I \Omega+S \Omega^{3}+\cdots\right)$ is the angular momentum
(spin-orbit, spinspin, etc.)

Act 4:

cosmological theories

EFT of Inflation

- The early universe: homogenous, isotropic, and slightly time dependent
- Inflation driven by $\psi_{a}=\bar{\psi}_{a}(t)$
- Time-translations spontaneously broken

Goldstone boson = adiabatic perturbations

$$
\psi_{a}=\bar{\psi}_{a}(t+\pi(x)) \simeq \bar{\psi}_{a}(t)+\partial_{t} \bar{\psi}_{a}(t) \cdot \pi(x)
$$

- Construct a systematic effective field theory
(Creminelli, Luty, Nicolis, Senatore 2006
Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007)

Can we write down action for Goldstones directly?

- Proceed by gauging the space-time symmetries of de Sitter
- Couple to matter that spontaneously breaks some of these symmetries (+ internal)
- spontaneously broken TIME + internal shifts
- spontaneously broken SPACIAL SHIFTS + internal shifts

EFT of inflation
Ex.
Solid Inflation

- Construct a systematic effective field theory

Conclusions

- "stuff" non-linearly realizes space-time symmetries (usual procedures don't work without being clever)
- in EFT one needs to identify 1) d.o.f. and 2) symmetries: coset helps with both
- general procedure to couple the Goldstones to gravity
- straightforward and exhaustive procedure
- SPIN: made simpler? new expansion parameter $\left(\omega / \omega_{0}\right)$ to assist in computations
- straightforward construction of inflation
- Applications: cosmology, plasma physics, exotic condensed matter states, etc. all in a model independent fashion

