MACROPIXELASIC (MPA): The readout ASIC for the pixel-strip (PS) module of the CMS outer tracker at HL-LHC

Davide Ceresa PH-ESE, CERN on behalf of the *CMS Tracker Phase II electronics team*

PH-ESE seminar, 10th March, 2015

CMS Tracker will be upgraded during Phase II

HL-LHC will operate at 14 TeV centre of mass energy with a peak luminosity of 5x10^34cm-2s-1

To exploit the very high interaction rate and integrated luminosity, reaching 3000 fb-1, **major upgrades to CMS are necessary**

New Requirements for HL-LHC CMS Tracker

High granularity for efficient track reconstruction beyond 140 Pile Up

Improved material budget

Pixelated sensors. Only in the inner part of the CMS tracker

Limited power budget

Provides high pT information, called stubs, to the Level-1 Trigger

Two sensors Pt - modules

Bunch crossing frequency Ship all data @40 MHz is impossible due to bandwidth limitation.

Pt modules and Pixels compose the Tracker

Tracker Layout by G.Bianchi, N.De Maio and S.Mersi

PIXEL STRIP MODULE

The Pixelated Pt-Module

Pixel + Strip module readout scheme

Pixel + Strip module exploded view

PS module is fully integrate entity

DC-DC converters

High pT information readout is **Trigger-less**

All tracks information readout is **Triggered by Level 1 trigger**

Tracker Back-end data transmission optimization Data transmission frequency 320 MHz with differential lines

Tracker Back-end data transmission

simulation and studies by S. Viret

TRG size (in bits)	Bend coding	Stub losses (in %)					
		All stubs			Good stubs		
		TOB 1	TOB 2	тов з	TOB 1	TOB 2	TOB 3
256	5	15.3	1.9	0.6	19.4	2.2	0.3
	3	12.3	1.3	0.5	15.9	1.4	0.2
	0	7.2	0.7	0.5	9.8	0.7	0.1
288	5	10.7	1.1	0.5	14.2	1.2	0.2
	3	8.2	0.8	0.5	11.1	0.8	
	0	4.6	0.5	0.4	6.3	0.4	
312	5	8.2	0.8	0.5	11.1	0.8	0.1
	3	6.1	0.6	0.5	8.4	0.5	
	0	3.3	0.4	0.4	4.6	0.3	0.1
320	5	7.4	0.7	0.5	10.1	0.7	
	3	5.6	0.5	0.4	7.7	0.5	
	0	3.0	0.4	0.1	4.1	0.3	

		Proportion of PU4T (in%)	Stub losses (in %)		
	MPA/CBC bend bits		Good stubs (pT>2/IP<1)		
			TRG/RAW repartition (in bits)		
			After CONC		
			TIB 1	TIB 2	
			10G-LEC	LP-LEC	
			768b/128b	384b/64b	
PU140/T2-SB	4/4	10			
	3/3	10	0.2+/-0.4	0.0+/-0.5	
PU140/T3-SB	4/4	10			
	3/3	10	0.1+/-0.5	0.0+/-0.5	
PU200/T2-SB	4/4	10			
	3/3	10	0.5+/-0.3	0.3+/-0.4	
PU200/T3-SB	4/4	10			
	3/3	10	0.2+/-0.4	0.1+/-0.4	

Stub transmission to tracker back-end is clearly critical for the first barrel layer

Reduced thanks to: Bend bits reduction Tight Stub threshold Different LP-GBT transmission mode

Good stub losses lower than 0.5% in all the tracker at Pile Up 200

Power budget inside the tracker is limited

Total Power Allocated per 16 MPAs and SSAs: **4W** Total Power Allocated per MPA + SSA: **250 mW** Rough Power Estimation:

Remaining	70 mW –
SSA	40 mW
L1 Memory	70 mW
Analog	70 mW

I/O Clock Distribution Data Transport Stub Finding Logic L1 Data Logic Output Interface

Working temperature cooling: ~ -30C

Powering reference scheme

slide and studies from G. Blanchot, F. Faccio and S.Michelis

THE MACRO PIXELASIC

The Readout chip for the Pixel-Strip module

Macro Pixel ASIC specifications

Pixel Arrangement	120 x 16 = 1920 pixels
Macro Pixel Size	100 um x 1446 um
Silicon Detector type	n- on p+ of 200 um (~280 fF), DC coupled
Nominal signal	15000 e-
Technology	65 nm with 8-metals stack
Acquisition Type	Continuous
Acquisition Mode	Binary readout
Data types	 Encoded cluster position and width Encoded stubs position
Readout types	 Triggered for full frame Trigger-Less for high-pT information
Data storage	Pixel frame + strip frame for 10 us
Output data port	12 x sLVS @ 320 Mbps
Power budget	220 mW

MacroPixel ASIC Floorplan

Analog Front-End schematic

designed by J. Kaplon

Montecarlo simulations 100 runs for 2.5 fC

designed by J. Kaplon

Other simulation results:

Gain from S curves: Time walk : PSRR (Worst case): Noise(Worst case): INL

85 mV/fC

< 14 ns with threshold at 0.5 fC and signal from 0.75 to 12 fC

> 10 dB

< 200 e- (SNR >> 20)

< 2 %

Binary readout system

Cluster elimination and centroids extraction

Row Pixel Clustering

Avoids OR-ing of pixel columns \rightarrow Higher efficiency

Centroid position encoding is the second step

Priority Encoder:

Encodes up to 6 coordinate/ 25ns of a 128 bits vector. Used for:

Strip centroid position Pixel centroid row position Reference: "MEPHISTO a 128-channel front end chip with real time data sparsification and multi-hit capability" P. Fischer, G. Comes, H. Kruger.

Mephisto Encoder: Encodes up to 2 coordinate/25ns cycle but low power. Used for **Pixel centroid column position encoder** (x16 rows)

Parallax correction on encoded positions

The shift is needed to compensate the **relative position between the chip and the collision point:**

Strip parallax correction = +/- 400 um with a precision of +/- 50 um

Correlation logic select matching hits

Correlation logic select matching hits

Correlation logic select matching hits

• Input:

- Strip Centroid List = 8 elements
- Pixel Centroid List = 8 elements
- Search Window = +/- 3 (7 strip around the Pixel Centroid)
- Pseudo-code:

```
For (Pixel Centroid List)
```

For (Strip Centroid List)

Limit: 2 stubs for each Pixel Centroid:

- Strip/Pixel Centroid = n.
- Output Bus = 2n.
- ECM Cell = n^2.

Loop Unrolling is necessary to implement this code in HW.

Efficiency using Montecarlo events

Input from Montecarlo generated events are used to calculate and compare the different Stub finding architectures efficiencies.

Efficiency Results

Stub Finding logic efficiency results

Without an interconnect technology (ex: TSV) between the two sides of the module, tracks crossing the middle will not be identified as stubs

Tracker Layout by G.Bianchi, N.De Maio and S.Mersi

Stub Finding logic efficiency results

Stub Finding logic efficiency results

Tilted layout solves the problem and decrease the number of modules, but complicates mechanics

Tracker Layout by G.Bianchi, N.De Maio and S.Mersi

Development of SRAM IP block

S. Bonacini, I. Kremastotis, K.Kloukinas,

Memory Compiler specifications

- Clock synchronous, pseudo dual-port memory
 - Write/Read operation @ same clock cycle
- Operating speed: 80 MHz @ 1.2 V
- Compatible with the 65nm CMOS
 - Only lower 4 metal levels used in the SRAM block
 - Only Standard-Vt transistors
 - Special design techniques for *radiation tolerance*
- Memory Compiler specifications:
 - Minimum size: 128 words of 8 bit
 - Max size: 1k words of 256 bits
- Development work is outsourced

MPA Memory specifications:

17 SRAMs of 512 words x 128 bits power dissipation more than 1/3 of total budget

Different architectures under study for L1 logic

Suppress write operations which does not contain hits

THE MPA-LIGHT

The Macro Pixel ASIC demonstrator

MPA prototyping requires three ASICs

Clock Distribution

MPA-Light designed by J.Kaplon, D.Ceresa and R. De Olivera Clock and SLVS structure designed by G.Traversi and L.Gaioni SRAM test designed by external company, S.Bonacini and I. Kremastotis

MPA-Light ASIC floorplan

Ζ

►X

MPA-Light test system overview

developed by A. Caratelli

FPGA Handle configuration, readout and control the interface board

> Voltage and Current generator and monitors designed for the CLICpix readout by Szymon Kulis

Exchangeable board for the ASIC wire bonding and decoupling

Synchronous and Asynchronous acquisition are available

Gain measures confirms specifications

High pT information logic is working

 \rightarrow

 \rightarrow

- 1. No processing
- 2. With Data Reduction
- 3. Strip Emulator \rightarrow
- Save in memory all the data from Pixel Matrix Generate and save in memory Centroid or Stubs OR the Pixel Column and send the data in output

Synchronous readout allows additional FE studies

Changing the calibration injection point and using the synchronous readout we can characterize the shaper of the analog FE

Shaper measurement for different pulses

The measurement allows peaking time, peak gain and walk time measurement which are in agreement with the simulation.

MaPSA-Light = 6 x MPA-Light + Pixel sensor

Design by G.Blanchot, et Al.

- MAcro Pixel Sub Assembly (MAPSA) light
- Objective is to assemble a module of 3 x 2 MPA-light chips for a total of 288 pixels

5.4 mm				
0 ⁰ 1 ¹ 0 ⁰ 0 ¹ 1 ⁰ 1 ⁰ 0 ¹ 0 ⁰ 1 ⁰ 0 ⁰ 0		1¹0⁰0⁴0⁰0⁴0¹1⁴0⁴0⁴0⁴0⁴1⁴0⁴0⁴0⁴1⁴1⁴0⁴0⁴1⁴1⁴0⁴0⁴1⁴1⁴0⁴0⁴1⁴1⁴0⁴0⁴1⁴1⁴0⁴0⁴1⁴1⁴0⁴0⁴1⁴1⁴1⁴0⁴0⁴1⁴1⁴1⁴0⁴0⁴1⁴1⁴1⁴1⁴1⁴1⁴1⁴1⁴1⁴1		
00011001100011100011100110011001	a ⁰ , 1 ₀ 0, 1 ₀ 0, 1 ₀ 1, 1 ₀ 0, 0 ₀ 0, 0 , 1 ₀ 0 ₀ 0, 0	00000100000001001001000000100000000000		
→ Φ				

Conclusions

• MPA-Light:

- All measurement without sensor indicate that the ASIC is fully functional
- Assembly with the sensor is foreseen in the next months
 - Sensor Characterization
 - Module assembly first prototype

• Full Macro Pixel ASIC project:

- Analog performance confirmed in 65 nm technology
- Macro Pixel ASIC and Short Strip ASIC final development can start

Thanks to all the CMS TRACKER PHASE II ELECTRONICS TEAM

Davide Ceresa PH-ESE, CERN on behalf of the *CMS Tracker Phase II electronics team*

PH-ESE seminar, 10th March, 2015

SPARE SLIDES

MPA-Light Building Blocks

Calibration DAC measurement

Calibration DAC is the only DAC we can measure directly the voltage.

S-curve with trimming procedures

Trimming allows to correct for the threshold variation along the pixel array and to set the same threshold for all the pixels

Iterative trimming at nominal threshold

Allows optimization around the operative point

S-curve fitting with error functions

The error function and its complementary allows the extraction of the Analog Front-End parameters from the S-curves obtained from the hit counters

The fitting of a threshold S-curves provides threshold and noise information about the pixel

Threshold DAC measured with calibration pulses

Hit detector and No processing mode

Pixel clustering finds the center of the cluster

Centroid extraction encodes cluster positions

Shaper measurement for different biases

Current and voltage reference for the Analog front-end can be tuned through three external voltage reference:

> Bias Voltage Feedback Voltage Pre Amplifier Voltage

The three references can undergo a variation of +/- 25% and we can measure the effect on the shaper output with injection time sweep

MPA-Light ASIC allows two assemblies

BASE	LINE
SSA STRIP SENSOR	
Cooling	
 PROF	POSAL
	SSA
EXTENDED PIXEL SENSOR	
MPA	MPA
L	
	0 0
Only bump bonding in MPA design	Digital IO through sensor periphery

- No extra material between strip and pixel sensors
- Better cooling of MPA

Temperature gradient across the sensor surface can be critical Larger sensor can create problem in final design production

Chip Layout (clock distribution)

Chip Layout (sLVDS drivers and receivers)

Service Board with Staged DCDC scheme

Input power: low profile Molex Picoblade 2 poles connector (stands our current rating).

The filters will stay out of the shield area, must be on sides.

Wirebond based IO implemented so far.

The same low mass ECCA based coil is used for the 3 converters.

The new LV DCDCs still based on teh FEASTMP geometry. However we can consider a smaller package for this chip.

The 3 DCDC stages can be fitted in the available board space without excessive compromise.

30/SEP/2014 G. Blanchot, F. Faccio, S. Michelis - 2S and PS Powering Meeting

flexible hybrid

Forum 2014: Tilted Barrel for CMS Phase 2 Upgrade

More realistic tilted geometry

- Short cylindrical section in the center
- Constant tilt angle in several successive ring
 - Helps avoiding clashes
 - Also, reduces support structure variants.

Forum 2014: Tilted Barrel for CMS Phase 2 Upgrade

Z = 0

S. Mersi at al., Performance of Tilted Inner Barrel, CMS Upgrade Workshop 1 April 2014

The gain by the Tilted inner section is clearly visible even at the full Tracker

Material budget full tracker

S. Mersi at al., Performance of Tilted Inner Barrel, CMS Upgrade Workshop 1 April 2014

This design still misses a few 'details':

- Most of the modules (on purpose to keep CAD model size • reasonable).
- Power wire and optofibres and their handling during various assy ٠ stages
- Cooling pipe manifolding, supply lines and connections
- \mathbf{O} is a second of $(\mathbf{A} + \mathbf{A} + \mathbf{A}$

