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Elementary scalars are quadratically 
sensitive to physics at higher scales.!

!
Independent of regularization 

scheme.!
!

Model-building scales aside, gravity 
attests to presence of a higher scale.!

!
No viable proposals for mitigating 

sensitivity to physics @ Planck scale 
without new physics @ weak scale.!

!
Hierarchy problem only sharpened 
with the discovery of an elementary 
SM-like Higgs (+nothing else so far).!

!

Hierarchy 
Problem
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Natural vs. unnatural
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Hierarchy problem is not a “just-so story”
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Supersymmetry Global symmetry

m2
h ⇠ 3y2t

4⇡2
m̃2

log(⇤

2/m̃2
)

Totally natural:

} }

m̃ . 200GeV

SUSY breaking 
Sparticles m̃

≲4π/G

Higgs mh

(compositeness, SUSY, turtles)

Global symm. breaking 
Partner particles m̃

≲4π/G

Higgs mh

Electroweak naturalness

Continuous symmetries → partner states w/ SM quantum #s

[Georgi & Kaplan ’84; Contino, 
Nomura, Pomarol ‘03]

[Fayet ’76; Dimopoulos & Georgi ‘81]
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Make the Higgs mass technically natural by introducing symmetries



The naturalness strategy
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This is a strategy for new physics near mh, not a no-lose theorem, 
because the theory does not break down if it is unnatural. 

E.g. charged pions Electromagnetic contribution to the 
charged pion mass sensitive to the 

cutoff of the pion EFT.

But naturalness has often been a very successful strategy.

�m2 ⇠ 3e2

16⇡2
⇤2

Naturalness suggests Λ~850 MeV. 
Rho meson (new physics!) enters at 770 MeV. 



A physics driver @ LHC

Mass scales [GeV]
0 200 400 600 800 1000 1200 1400 1600 1800

233
'λ  µ tbt→ 

R
t~

233
λt  ντµ → 

R
t~

123
λt  ντµ → 

R
t~

122
λt  νeµ → 

R
t~

112
''λ qqqq  → 

R
q~

233
'λ  µ qbt→ q~
231
'λ  µ qbt→ q~
233

λ  ν qll→ q~
123

λ  ν qll→ q~
122

λ  ν qll→ q~
112

''λ qqqq  → g~
323

''λ tbs  → g~
112

''λ qqq  → g~
113/223

''λ qqb  → g~
233
'λ  µ qbt→ g~
231
'λ  µ qbt→ g~
233

λ  ν qll→ g~
123

λ  ν qll→ g~
122

λ  ν qll→ g~

0
χ
∼ l → l~

 
0

χ
∼ 

0
χ
∼

ν τττ → ±χ∼ 
2

0
χ
∼

 
0

χ
∼ 

0
χ
∼

ν τ ll→ ±χ∼ 
2

0
χ
∼

0
χ
∼ 

0
χ
∼ H W → 

2

0
χ
∼ ±χ∼

0
χ
∼ 

0
χ
∼ H Z → 

2

0
χ
∼ 

2

0
χ
∼

0
χ
∼ 

0
χ
∼ W Z → 

2

0
χ
∼ ±χ∼

0
χ
∼ 

0
χ
∼ Z Z → 

2

0
χ
∼ 

2

0
χ
∼

0
χ
∼0

χ
∼

νν-l
+

 l→ 
-

χ
∼+

χ
∼

 
0

χ
∼ 

0
χ
∼

ν lll → ±χ∼ 
2

0
χ
∼

0
χ
∼ bZ → b~

0
χ
∼ tW → b~

0
χ
∼ b → b~

) H 
1

0
χ
∼  t → 

1
t~ (→ 

2
t~

) Z 
1

0
χ
∼  t → 

1
t~ (→ 

2
t~

 H G)→ 
0

χ
∼(

0
χ
∼ t b → t~

)
0

χ
∼ W→ 

+
χ
∼ b(→ t~

0
χ
∼ t → t~

0
χ
∼ q → q~

))
0

χ
∼ W→ 

±
χ
∼ t(→ b~ b(→ g~

)
0

χ
∼ W→

±
χ
∼ qq(→ g~

)
0

χ
∼ t→ t~ t(→ g~

0
χ
∼ tt → g~

0
χ
∼ bb → g~

0
χ
∼ qq → g~

 

SUS-13-006 L=19.5 /fb

SUS-13-008 SUS-13-013 L=19.5 /fb

SUS-13-011 L=19.5 /fb x = 0.25 x = 0.50
x = 0.75

SUS-14-002 L=19.5 /fb

SUS-13-006 L=19.5 /fb x = 0.05
x = 0.50

x = 0.95

SUS-13-006 L=19.5 /fb

SUS-12-027 L=9.2 /fb

SUS-13-007 SUS-13-013 L=19.4 19.5 /fb

SUS-12-027 L=9.2 /fb

SUS 13-019 L=19.5 /fb

SUS-14-002 L=19.5 /fb

SUS-12-027 L=9.2 /fb
SUS-13-003 L=19.5 9.2 /fb

SUS-13-006 L=19.5 /fb

SUS-12-027 L=9.2 /fb

EXO-12-049 L=19.5 /fb

SUS-14-011 L=19.5 /fb

SUS-12-027 L=9.2 /fb

SUS-13-008 L=19.5 /fb

SUS-12-027 L=9.2 /fb

EXO-12-049 L=19.5 /fb

SUS-12-027 L=9.2 /fb

SUS-12-027 L=9.2 /fb

SUS-13-024 SUS-13-004 L=19.5 /fb

SUS-13-003 L=19.5 /fb

SUS-12-027 L=9.2 /fb

SUS-13-019 L=19.5 /fb

SUS-13-018 L=19.4 /fb

SUS-13-014 L=19.5 /fb

SUS-14-011 SUS-13-019 L=19.3 19.5 /fb

SUS-13-008 SUS-13-013 L=19.5 /fb

SUS-13-024 SUS-13-004 L=19.5 /fb

SUS-13-013 L=19.5 /fb x = 0.20x = 0.50

SUS-12-027 L=9.2 /fb

SUS-13-003 L=19.5 9.2 /fb

SUS-12-027 L=9.2 /fb

SUS-13-008 SUS-13-013 L=19.5 /fb

SUS-12-027 L=9.2 /fb

SUS-14-002 L=19.5 /fb

SUS-12-027 L=9.2 /fb

SUS-13-013 L=19.5 /fb

SUS-13-006 L=19.5 /fb x = 0.05x = 0.50
x = 0.95

SUS-13-006 L=19.5 /fb

RP
V

gl
ui

no
 p

ro
du

ct
io

n
sq

ua
rk

st
op

sb
ot

to
m

EW
K 

ga
ug

in
os

sle
pt

on

Summary of CMS SUSY Results* in SMS framework

CMS Preliminary

m(mother)-m(LSP)=200 GeV m(LSP)=0 GeV

ICHEP 2014

lspm⋅+(1-x)motherm⋅ = xintermediatem
For decays with intermediate mass,

Only a selection of available mass limits
*Observed limits, theory uncertainties not included

Probe *up to* the quoted mass limit
CMS Exotica Physics Group Summary – ICHEP, 2014
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CMS Preliminary
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Fermions dijets, Λ+ LL/RR

dijets, Λ- LL/RR
dimuons, Λ+ LLIM
dimuons, Λ- LLIM

dielectrons, Λ+ LLIM
dimuons, Λ- LLIM
single e,  Λ HnCM
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inclusive jets, Λ+
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Jet Extinction Scale
String Scale (jj)
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Large Extra 
Dimensions

Compositeness

Model e, µ, τ, γ Jets Emiss

T

∫
L dt[fb−1] Mass limit Reference
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MSUGRA/CMSSM 0 2-6 jets Yes 20.3 m(q̃)=m(g̃) 1405.78751.7 TeVq̃, g̃

q̃q̃, q̃→qχ̃
0
1 0 2-6 jets Yes 20.3 m(χ̃

0
1)=0 GeV, m(1st gen. q̃)=m(2nd gen. q̃) 1405.7875850 GeVq̃

q̃q̃γ, q̃→qχ̃
0
1 (compressed) 1 γ 0-1 jet Yes 20.3 m(q̃)-m(χ̃

0
1 ) = m(c) 1411.1559250 GeVq̃

g̃g̃, g̃→qq̄χ̃
0
1 0 2-6 jets Yes 20.3 m(χ̃

0
1)=0 GeV 1405.78751.33 TeVg̃

g̃g̃, g̃→qqχ̃
±
1→qqW±χ̃

0
1

1 e, µ 3-6 jets Yes 20 m(χ̃
0
1)<300 GeV, m(χ̃

±
)=0.5(m(χ̃

0
1)+m(g̃)) 1501.035551.2 TeVg̃

g̃g̃, g̃→qq(ℓℓ/ℓν/νν)χ̃
0
1

2 e, µ 0-3 jets - 20 m(χ̃
0
1)=0 GeV 1501.035551.32 TeVg̃

GMSB (ℓ̃ NLSP) 1-2 τ + 0-1 ℓ 0-2 jets Yes 20.3 tanβ >20 1407.06031.6 TeVg̃

GGM (bino NLSP) 2 γ - Yes 20.3 m(χ̃
0
1)>50 GeV ATLAS-CONF-2014-0011.28 TeVg̃

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 m(χ̃
0
1)>50 GeV ATLAS-CONF-2012-144619 GeVg̃

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 m(χ̃
0
1)>220 GeV 1211.1167900 GeVg̃

GGM (higgsino NLSP) 2 e, µ (Z) 0-3 jets Yes 5.8 m(NLSP)>200 GeV ATLAS-CONF-2012-152690 GeVg̃

Gravitino LSP 0 mono-jet Yes 20.3 m(G̃)>1.8 × 10−4 eV, m(g̃)=m(q̃)=1.5 TeV 1502.01518865 GeVF1/2 scale

g̃→bb̄χ̃
0
1 0 3 b Yes 20.1 m(χ̃

0
1)<400 GeV 1407.06001.25 TeVg̃

g̃→tt̄χ̃
0
1 0 7-10 jets Yes 20.3 m(χ̃

0
1) <350 GeV 1308.18411.1 TeVg̃

g̃→tt̄χ̃
0
1

0-1 e, µ 3 b Yes 20.1 m(χ̃
0
1)<400 GeV 1407.06001.34 TeVg̃

g̃→bt̄χ̃
+

1 0-1 e, µ 3 b Yes 20.1 m(χ̃
0
1)<300 GeV 1407.06001.3 TeVg̃

b̃1b̃1, b̃1→bχ̃
0
1 0 2 b Yes 20.1 m(χ̃

0
1)<90 GeV 1308.2631100-620 GeVb̃1

b̃1b̃1, b̃1→tχ̃
±
1 2 e, µ (SS) 0-3 b Yes 20.3 m(χ̃

±
1 )=2 m(χ̃

0
1) 1404.2500275-440 GeVb̃1

t̃1 t̃1, t̃1→bχ̃
±
1 1-2 e, µ 1-2 b Yes 4.7 m(χ̃

±
1 ) = 2m(χ̃

0
1), m(χ̃

0
1)=55 GeV 1209.2102, 1407.0583110-167 GeVt̃1 230-460 GeVt̃1

t̃1 t̃1, t̃1→Wbχ̃
0
1 or tχ̃

0
1

2 e, µ 0-2 jets Yes 20.3 m(χ̃
0
1)=1 GeV 1403.4853, 1412.474290-191 GeVt̃1 215-530 GeVt̃1

t̃1 t̃1, t̃1→tχ̃
0
1

0-1 e, µ 1-2 b Yes 20 m(χ̃
0
1)=1 GeV 1407.0583,1406.1122210-640 GeVt̃1

t̃1 t̃1, t̃1→cχ̃
0
1 0 mono-jet/c-tag Yes 20.3 m(t̃1)-m(χ̃

0
1 )<85 GeV 1407.060890-240 GeVt̃1

t̃1 t̃1(natural GMSB) 2 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)>150 GeV 1403.5222150-580 GeVt̃1

t̃2 t̃2, t̃2→t̃1 + Z 3 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)<200 GeV 1403.5222290-600 GeVt̃2

ℓ̃L,R ℓ̃L,R, ℓ̃→ℓχ̃
0
1 2 e, µ 0 Yes 20.3 m(χ̃

0
1)=0 GeV 1403.529490-325 GeVℓ̃

χ̃+
1
χ̃−

1 , χ̃
+

1→ℓ̃ν(ℓν̃) 2 e, µ 0 Yes 20.3 m(χ̃
0
1)=0 GeV, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1403.5294140-465 GeVχ̃±

1

χ̃+
1
χ̃−

1 , χ̃
+

1→τ̃ν(τν̃) 2 τ - Yes 20.3 m(χ̃
0
1)=0 GeV, m(τ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1407.0350100-350 GeVχ̃±

1

χ̃±
1
χ̃0

2→ℓ̃Lνℓ̃Lℓ(ν̃ν), ℓν̃ℓ̃Lℓ(ν̃ν) 3 e, µ 0 Yes 20.3 m(χ̃
±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1402.7029700 GeVχ̃±

1 ,
χ̃0

2

χ̃±
1
χ̃0

2→Wχ̃
0
1Zχ̃

0
1

2-3 e, µ 0-2 jets Yes 20.3 m(χ̃
±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, sleptons decoupled 1403.5294, 1402.7029420 GeVχ̃±

1 ,
χ̃0

2

χ̃±1 χ̃
0
2→Wχ̃

0
1h χ̃

0
1, h→bb̄/WW/ττ/γγ e, µ, γ 0-2 b Yes 20.3 m(χ̃

±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, sleptons decoupled 1501.07110250 GeVχ̃±

1 ,
χ̃0

2

χ̃0
2
χ̃0

3, χ̃
0
2,3 →ℓ̃Rℓ 4 e, µ 0 Yes 20.3 m(χ̃

0
2)=m(χ̃

0
3), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

0
2)+m(χ̃

0
1)) 1405.5086620 GeVχ̃0

2,3

Direct χ̃
+

1
χ̃−

1 prod., long-lived χ̃
±
1 Disapp. trk 1 jet Yes 20.3 m(χ̃

±
1 )-m(χ̃

0
1)=160 MeV, τ(χ̃

±
1 )=0.2 ns 1310.3675270 GeVχ̃±

1

Stable, stopped g̃ R-hadron 0 1-5 jets Yes 27.9 m(χ̃
0
1)=100 GeV, 10 µs<τ(g̃)<1000 s 1310.6584832 GeVg̃

Stable g̃ R-hadron trk - - 19.1 1411.67951.27 TeVg̃

GMSB, stable τ̃, χ̃
0
1→τ̃(ẽ, µ̃)+τ(e, µ) 1-2 µ - - 19.1 10<tanβ<50 1411.6795537 GeVχ̃0

1

GMSB, χ̃
0
1→γG̃, long-lived χ̃

0
1

2 γ - Yes 20.3 2<τ(χ̃
0
1)<3 ns, SPS8 model 1409.5542435 GeVχ̃0

1

q̃q̃, χ̃
0
1→qqµ (RPV) 1 µ, displ. vtx - - 20.3 1.5 <cτ<156 mm, BR(µ)=1, m(χ̃

0
1)=108 GeV ATLAS-CONF-2013-0921.0 TeVq̃

LFV pp→ν̃τ + X, ν̃τ→e + µ 2 e, µ - - 4.6 λ′
311

=0.10, λ132=0.05 1212.12721.61 TeVν̃τ

LFV pp→ν̃τ + X, ν̃τ→e(µ) + τ 1 e, µ + τ - - 4.6 λ′
311

=0.10, λ1(2)33=0.05 1212.12721.1 TeVν̃τ

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 m(q̃)=m(g̃), cτLS P<1 mm 1404.25001.35 TeVq̃, g̃

χ̃+
1
χ̃−

1 , χ̃
+

1→Wχ̃
0
1, χ̃

0
1→eeν̃µ, eµν̃e 4 e, µ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ121!0 1405.5086750 GeVχ̃±

1

χ̃+
1
χ̃−

1 , χ̃
+

1→Wχ̃
0
1, χ̃

0
1→ττν̃e, eτν̃τ 3 e, µ + τ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ133!0 1405.5086450 GeVχ̃±

1

g̃→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091916 GeVg̃

g̃→t̃1t, t̃1→bs 2 e, µ (SS) 0-3 b Yes 20.3 1404.250850 GeVg̃

Scalar charm, c̃→cχ̃
0
1 0 2 c Yes 20.3 m(χ̃

0
1)<200 GeV 1501.01325490 GeVc̃

Mass scale [TeV]10−1 1
√

s = 7 TeV
full data

√
s = 8 TeV

partial data

√
s = 8 TeV

full data

ATLAS SUSY Searches* - 95% CL Lower Limits
Status: Feb 2015

ATLAS Preliminary
√

s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.
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ADD GKK + g/q − 1-2 j Yes 4.7 n = 2 1210.44914.37 TeVMD

ADD non-resonant ℓℓ 2e,µ − − 20.3 n = 3 HLZ ATLAS-CONF-2014-0305.2 TeVMS

ADD QBH→ ℓq 1 e,µ 1 j − 20.3 n = 6 1311.20065.2 TeVMth

ADD QBH − 2 j − 20.3 n = 6 to be submitted to PRD5.82 TeVMth

ADD BH high Ntrk 2 µ (SS) − − 20.3 n = 6, MD = 1.5 TeV, non-rot BH 1308.40755.7 TeVMth

ADD BH high ∑ pT ≥ 1 e, µ ≥ 2 j − 20.3 n = 6, MD = 1.5 TeV, non-rot BH 1405.42546.2 TeVMth

RS1 GKK → ℓℓ 2 e,µ − − 20.3 k/MPl = 0.1 1405.41232.68 TeVGKK mass
RS1 GKK →WW → ℓνℓν 2 e,µ − Yes 4.7 k/MPl = 0.1 1208.28801.23 TeVGKK mass
Bulk RS GKK → ZZ → ℓℓqq 2 e,µ 2 j / 1 J − 20.3 k/MPl = 1.0 ATLAS-CONF-2014-039730 GeVGKK mass
Bulk RS GKK → HH → bb̄bb̄ − 4 b − 19.5 k/MPl = 1.0 ATLAS-CONF-2014-005590-710 GeVGKK mass
Bulk RS gKK → tt 1 e,µ ≥ 1 b, ≥ 1J/2j Yes 14.3 BR = 0.925 ATLAS-CONF-2013-0522.0 TeVgKK mass

S1/Z2 ED 2 e,µ − − 5.0 1209.25354.71 TeVMKK ≈ R−1

UED 2 γ − Yes 4.8 ATLAS-CONF-2012-0721.41 TeVCompact. scale R−1

SSM Z ′ → ℓℓ 2 e,µ − − 20.3 1405.41232.9 TeVZ′ mass
SSM Z ′ → ττ 2 τ − − 19.5 ATLAS-CONF-2013-0661.9 TeVZ′ mass
SSM W ′ → ℓν 1 e,µ − Yes 20.3 ATLAS-CONF-2014-0173.28 TeVW′ mass
EGM W ′ →WZ → ℓν ℓ′ℓ′ 3 e,µ − Yes 20.3 1406.44561.52 TeVW′ mass
EGM W ′ →WZ → qqℓℓ 2 e,µ 2 j / 1 J − 20.3 ATLAS-CONF-2014-0391.59 TeVW′ mass
LRSM W ′

R → tb 1 e,µ 2 b, 0-1 j Yes 14.3 ATLAS-CONF-2013-0501.84 TeVW′ mass
LRSM W ′

R → tb 0 e,µ ≥ 1 b, 1 J − 20.3 to be submitted to EPJC1.77 TeVW′ mass

CI qqqq − 2 j − 4.8 η = +1 1210.17187.6 TeVΛ

CI qqℓℓ 2 e,µ − − 20.3 ηLL = −1 ATLAS-CONF-2014-03021.6 TeVΛ

CI uutt 2 e,µ (SS) ≥ 1 b, ≥ 1 j Yes 14.3 |C | = 1 ATLAS-CONF-2013-0513.3 TeVΛ

EFT D5 operator (Dirac) 0 e,µ 1-2 j Yes 10.5 at 90% CL for m(χ) < 80 GeV ATLAS-CONF-2012-147731 GeVM∗

EFT D9 operator (Dirac) 0 e,µ 1 J, ≤ 1 j Yes 20.3 at 90% CL for m(χ) < 100 GeV 1309.40172.4 TeVM∗

Scalar LQ 1st gen 2 e ≥ 2 j − 1.0 β = 1 1112.4828660 GeVLQ mass
Scalar LQ 2nd gen 2 µ ≥ 2 j − 1.0 β = 1 1203.3172685 GeVLQ mass
Scalar LQ 3rd gen 1 e, µ, 1 τ 1 b, 1 j − 4.7 β = 1 1303.0526534 GeVLQ mass

Vector-like quark TT → Ht + X 1 e,µ ≥ 2 b, ≥ 4 j Yes 14.3 T in (T,B) doublet ATLAS-CONF-2013-018790 GeVT mass
Vector-like quark TT →Wb + X 1 e,µ ≥ 1 b, ≥ 3 j Yes 14.3 isospin singlet ATLAS-CONF-2013-060670 GeVT mass
Vector-like quark TT → Zt + X 2/≥3 e, µ ≥2/≥1 b − 20.3 T in (T,B) doublet ATLAS-CONF-2014-036735 GeVT mass
Vector-like quark BB → Zb + X 2/≥3 e, µ ≥2/≥1 b − 20.3 B in (B,Y) doublet ATLAS-CONF-2014-036755 GeVB mass
Vector-like quark BB →Wt + X 2 e,µ (SS) ≥ 1 b, ≥ 1 j Yes 14.3 B in (T,B) doublet ATLAS-CONF-2013-051720 GeVB mass

Excited quark q∗ → qγ 1 γ 1 j − 20.3 only u∗ and d ∗, Λ = m(q∗) 1309.32303.5 TeVq∗ mass
Excited quark q∗ → qg − 2 j − 20.3 only u∗ and d ∗, Λ = m(q∗) to be submitted to PRD4.09 TeVq∗ mass
Excited quark b∗ →Wt 1 or 2 e,µ 1 b, 2 j or 1 j Yes 4.7 left-handed coupling 1301.1583870 GeVb∗ mass
Excited lepton ℓ∗ → ℓγ 2 e, µ, 1 γ − − 13.0 Λ = 2.2 TeV 1308.13642.2 TeVℓ∗ mass

LSTC aT →W γ 1 e, µ, 1 γ − Yes 20.3 to be submitted to PLB960 GeVaT mass
LRSM Majorana ν 2 e,µ 2 j − 2.1 m(WR ) = 2 TeV, no mixing 1203.54201.5 TeVN0 mass
Type III Seesaw 2 e,µ − − 5.8 |Ve |=0.055, |Vµ |=0.063, |Vτ |=0 ATLAS-CONF-2013-019245 GeVN± mass
Higgs triplet H±± → ℓℓ 2 e,µ (SS) − − 4.7 DY production, BR(H±± → ℓℓ)=1 1210.5070409 GeVH±± mass
Multi-charged particles − − − 4.4 DY production, |q| = 4e 1301.5272490 GeVmulti-charged particle mass
Magnetic monopoles − − − 2.0 DY production, |g | = 1gD 1207.6411862 GeVmonopole mass

Mass scale [TeV]10−1 1 10
√
s = 7 TeV

√
s = 8 TeV

ATLAS Exotics Searches* - 95% CL Exclusion
Status: ICHEP 2014

ATLAS Preliminary∫
L dt = (1.0 - 20.3) fb−1

√
s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown.

CMS Searches for New Physics Beyond Two Generations (B2G)

95% CL Exclusions (TeV)

Excluded Mass (TeV)
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Displaced tops

Excited tops

tb Resonances

 Resonancestt

170 of these 226 channels tied to naturalness 

6



✓ Naturalness 

✓ Dark matter 

✓ Unification 

✓ Higgs mass 

✓ Decoupling

Why SUSY? Why not?
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) = 30, AβMSUGRA/CMSSM: tan( Status: ICHEP 2014

ATLAS Preliminary
 = 8 TeVs, -1 L dt = 20.1 - 20.7 fb∫

τ∼

LSP
 not included.theory

SUSYσ95% CL limits.  

0-lepton, 2-6 jets

0-lepton, 7-10 jets

0-1 lepton, 3 b-jets

1-lepton + jets + MET

1-2 taus + 0-1 lept. + jets + MET

 3 b-jets≥2SS/3 leptons, 0 - 

arXiv: 1405.7875

arXiv: 1308.1841

arXiv: 1407.0600

ATLAS-CONF-2013-062

arXiv: 1407.0603

arXiv: 1404.2500

Mass reach for simplest 
versions out to 1.5 TeV

~1% tuning level

The case for SUSY
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Search for Supersymmetry at ATLAS - LISHEP 2013 Carsten Hensel, Georg-August-Universität Göttingen

THE SUSY THEORY PHASE SPACE

!"

SUSY

N=1

MSSM NMSSM

pMSSM

(T. Rizzo, SLAC Summer Institute, 2012)

CMSSM

SUSY is not just one theory.
It’s rather a concept with a 
multitude of possible 
manifestations!

LHC searches at 7 and 8 TeV have so far excluded about    
1/3 of the parameter space of the pMSSM; the full parameter 
space of relevant SUSY models is not even defined

Joseph Lykken                                                                                                                            LHCP 2013, Barcelona, May 18, 2013

M. Cahill-Rowley, J. Hewett, A. Ismail, T. Rizzo, arXiv:1211.1981

SUSY contains multitudes!
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Minimal ingredients

h~
bL
~ tR~tL~

g~

w~

h

5 TeV

m2
h ⇠ 3y2t

4⇡2
m̃2

log(⇤

2/m̃2
)

At the very least: organize minimal 
spectrum for naturalness by size of 

threshold corrections to Higgs

QCD production of stops, gluinos 
makes natural target for LHC 
(but also look for electroweak 
physics @ electroweak scale)

[Dimopoulos, Giudice ‘95; Cohen, Kaplan, Nelson ’96; Papucci, 
Ruderman, Weiler ’11; Brust, Katz, Lawrence, Sundrum ’11]

“Natural SUSY”

9 Natural SUSY was in the “Old Testament” 



Direct limits
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~7% tuning level

“generically”
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)

Scalar top searches: 
greatest reach for 
SUSY naturalness

See also S. Asai’s talk



Looking forward
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0 and 1-lepton combined

 discoveryσ>=60) 5µ (<-1300 fb
>=60) 95% CL exclusionµ (<-1300 fb

 discoveryσ>=140) 5µ (<-13000 fb
>=140) 95% CL exclusionµ (<-13000 fb

ATLAS 8 TeV (1-lepton): 95% CL obs. limit
ATLAS 8 TeV (0-lepton): 95% CL obs. limit

Figure 5: The 95% CL exclusion limits (dashed) and 5� discovery reach (solid) for 300 fb�1 (red) and
3000 fb�1 (black) in the t̃, ⇥̃0

1 mass plane assuming t̃ ⌅ t + ⇥̃0
1 with a branching ratio of 100%. The

results are shown for the combination of the 1-lepton and 0-lepton analyses. The observed limits from
the analyses of 8 TeV data are also shown.

Figure 6: The Feynman diagram for the ⇥̃0
2⇥̃
±
1 simplified model studied in this note. The ⇥̃±1 is assumed

to decay as ⇥̃±1 ⌅ W±(⇥)⇥̃0
1 and the ⇥̃0

2 as ⇥̃0
2 ⌅ Z(⇥) ⇥̃0

1 with 100% branching ratio.

3.3 Signal Region Selection

Two signal regions are defined for each luminosity scenario considered, “SR1-3000” and “SR2-3000”
for the 3000 fb�1 scenario and “SR1-300” and “SR2-300” for the 300 fb�1 scenario. The regions are Z-
enriched regions to target the ⇥̃0

2 decays via on-shell Z bosons and have ranked selections on the pT of the
three leptons of 100, 80 and 50 GeV from leading to second leading to third leading respectively. Events
are required to include at least one Z boson candidate, defined as a Same-Flavour Opposite-Sign (SFOS)
lepton pair with mass |mSFOS � mZ | < 10 GeV. The mT is constructed from the lepton not included in the
SFOS pair with invariant mass closes to the Z boson mass. Each signal region has tight mT and Emiss

T
requirements to increase sensitivity in scenarios with large mass splitting between the chargino (or ⇥̃0

2)
and the lightest neutralino. The Emiss

T and mT distributions after the above selections and after requiring
Emiss

T > 50 GeV, are shown in Figure 7 for the 3000 fb�1 scenario. The signal regions for the 300 fb�1

and 3000 fb�1 scenarios have been optimised seperately and are described in Table 5.

10

11

Where we’ll be 
@ end of LHC:
“generically”

If stops are just outside our current reach, an abundance of new 
physics awaits in Run 2. If not…

~1% tuning level

Reach doubles 
by 300/fb



Implications

SUSY 
searches

Natural 
SUSY

Unnatural 
SUSY

Global 
symmetryRadical 

symmetry

Not 
symmetry

“i’m searching for”
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1. Natural SUSY?

Be stealthy	


cascades; tt spin correlations;	



tt cross section limit

Mix your flavors	


improving charm+MET with charm tagging

Be compressed	


coverage improving with shape-based searchesOr: UDD RPV
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FIG. 1: Existing constraints on pp → t̃t̃∗ → 4j from the LHC, reinterpreting the results of [8–11]

to account for stop acceptances relative to coloron or hyperpion acceptances.

to disentangle from the pure QCD backgrounds. Another major complicating aspect at the

LHC is the multijet triggers, which can heavily prescale-away the signatures of stops lighter

than several hundred GeV. Some of the best current direct limits actually come from LEP,

which rules out mt̃ <∼ 90 GeV [30]. A recent search at the Tevatron extends this limit up

to only about 100 GeV [31]. However, so far, direct searches for pair-production of dijet

resonances at the LHC have failed to reach the sensitivity necessary to place constraints for

any stop mass [8–11]. A snapshot of the current situation can be seen in Fig. 1. In fact, the

inevitable rise of trigger thresholds with instantaneous luminosity and beam energy leaves

us to wonder whether the LHC will ever be sensitive to this signal. At the very least, this

trend suggests that masses near the current limit of 100 GeV might be left unexplored.1

One way around these difficulties is to search for the stop as a dijet resonance produced in

the decays of heavier colored superparticles, such as gluinos [33] or sbottoms [6] (or possibly

the heavier stop eigenstate), or to simply set bounds using the associated leptonic activity

and high HT of these decays [34–37]. Naturalness suggests that these colored superparticles

should also not be far above 1 TeV, and might be produced with observable rates. It is also

possible to invoke Minimal Flavor Violation (MFV), which suggests that stops dominantly

decay (with a branching ratio≃ 95%) into b̄s̄ or b̄d̄ [13]. It was pointed out in [38] that

incorporating b-tagging into the triggering might allow the direct stop pair signal to write

to tape with higher efficiency, and subsequent kinematic analysis can discriminate it from

1 For recent projections for the long-term LHC, which begin to achieve exclusion reach but nonetheless do

not pursue signals below 300 GeV, see the recent Snowmass study [32].

2

[Bai, Katz, Tweedie ‘13]

Exclusions assume R parity is 
conserved; no sensitivity to stops with 

baryonic RPV 

[Shelton ’08; Fan, Reece, Ruderman ’11; Han, Katz, Krohn, 
Reece ’12;  Czakon, Mitov, Papucci, Ruderman, Weiler ’14]

[Mahbubani, Perez, Papucci, Ruderman, Weiler ‘12]

[Martin ’07; LeCompte & Martin ‘11]

Mix your decay modes	


use topness & other dedicated variables

[Grasser, Shelton ‘12]



2. Unnatural SUSY?
X Naturalness 
✓ Dark matter 
✓ Unification

h~

q~

g~

w~

h

5 TeV

What if SUSY has nothing to do 
with stabilizing the weak scale?

“(mini-)Split SUSY”

Figure 5: The Higgs mass (here chosen to be 125.5 GeV) constrains the scalar and fermion masses
to be in the shaded region, for varying tan �. The green bands are the 1� error from the top mass
measurement for the given value of tan �. Gauge coupling unification constrains the parameters
to be to the left of the solid bordeaux (1�) or dashed bordeaux (2�) lines as described in the text.
This plot was generated using the results of [9].

range from 10 TeV to 105 TeV. Figure 4 exhibits the relation between m0 and tan � fixing the
Higgs mass to its observed value. Note that heavy scalar masses above 103 TeV are only possible
for a limited range of small tan � . 2, whereas any value of tan � & 3 implies scalar masses
less than 100 TeV. This is a potentially exciting low mass range suggesting that the gauginos
and higgsinos may be LHC-accessible, independently of the WIMP miracle. The reason is that
in many models of SUSY breaking the gauginos are much lighter than the scalars, as they are
protected by R-symmetry. In fact one has to work hard to ensure that the SUSY and R-breaking
scales coincide. In simple models of anomaly mediation, for example, the gauginos are one loop
lighter than the scalars. Indeed, the range of m0 indicated by the Higgs mass is suggestive of a
one- or two-loop separation between scalars and gauginos.

Another constraint comes from unification, which prefers low values for the µ parameter. This
is underlined in Fig. 5, where we show the correlation between the scalar and the fermion masses

5

Scalars decouple, 
fermions are light 
(unification/DM)

Gluino, higgsino 
signals @ LHC

Gluino decays 
prompt or 
displaced

[Arvanitaki, NC, Dimopoulos, Villadoro ‘12]

[Wells ‘03; Giudice & Romanino ‘04; Arkani-Hamed & Dimopoulos ‘04]
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Unnatural but simple

Figure 8: Prediction for the spectrum of MGM after imposing the constraint from the Higgs mass (or better from
the top mass). For each superpartner we plot the allowed range of masses (in TeV) for four di↵erent combinations of
N = 1(3) and M = 104(1011) TeV. For each mass the lowest (highest) value corresponds to increasing (decreasing)
the value of the top mass by 2� with respect to its experimental central value. The values of tan� at the bottom
(top) side of each of the four bands, from left to right, are 58 (42), 49 (45), 56 (29) and 44 (46) respectively. The
three di↵erently shaded areas represent “pictorially” the existing LHC8 bounds and the expected reach at LHC14
and at a future 100 TeV collider, respectively from the bottom.

In MGM all soft masses are generated with the same order of magnitude by the gauge mediated
contribution, one gauge loop below the scale ⇤ = F/M (the ratio between the e↵ective scale of
SUSY breaking F and the mass of the messengers). Besides ⇤, the spectrum also depends, in a
milder way, on the actual mass of the messengers M , which determines the amount of running
of the soft parameters, and the number of messengers N (typically N = 1 or 3 for a vector like
messenger in the 5 or 10 of SU(5) respectively).

As mentioned before, the µ-term, being supersymmetric, would be an independent parameter,
but its value is fixed by requiring (tuning) the correct EWSB. Finally the A-terms and Bµ are
generated radiatively from RGE e↵ects. This fact has very interesting consequences [67,68]. First,
being A and Bµ terms generated at the quantum level from gaugino masses and µ-term implies
that the corresponding CP phases vanish, avoiding potentially dangerous bounds from EDMs.
Second, small suppressed A-terms imply that the stop mixing will never be large, while small Bµ

implies large values of tan �. These two predictions combined with the measured value of the Higgs
mass allows to fix also the overall scale ⇤, which must then lie at around the PeV scale to produce
the O(10) TeV SUSY scale required by the Higgs mass. The only remaining free parameters are
the messenger mass scale M and their number N , which a↵ect the properties of the spectrum in
a milder way.

20

[Vega, Villadoro ’15]

E.g., spectrum of minimal gauge mediation entirely fixed.

And still 28 orders of magnitude more natural than SM
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3. Global symmetries?
✓ Naturalness 
✓ Dark matter 
X Unification

5 TeV

b’L
t’Rt’L

w’,z’

h

What about the “other” symmetry 
(global) for the Higgs mass?

Need light QCD-charged top partners; bounds and tuning comparable to SUSY. 

ytHQ3t
†
R �

y2
t

2mT
(H†H)TLT †

R

16

See also P. Azzi’s talk

“Composite Higgs/Little Higgs”

[Georgi & Kaplan ’84; Arkani-Hamed, Cohen, Katz, Nelson, Gregoire ’02; Contino, Nomura, Pomarol ’03]



4. Radical symmetries?
✓ Naturalness 
✓ Dark matter 
✓ Unification

b’L
t’Rt’L

w’,z’

h

g’

Twin Higgs

h~

bL
~tR~tL~

w~

h

g’

[Chacko, Goh, Harnik]5 TeV

What if the weak scale is natural, 
but the new states are SM neutral?

Folded SUSY
[Burdman, Chacko, Harnik]

Strong SUSY 
bounds have 

nothing to do with 
couplings to Higgs. 

!
Reach comes from 
QCD quantum #’s 

!
Can we have 

natural theories 
without colored 
partner states?

Yes17

“Neutral naturalness”



An example: Twin Higgs
Standard 

Model
Standard 

Model
E.g., weak gauge symmetry is SU(2)us x SU(2)twin

Thanks to Z2, radiative corrections to the Higgs 
mass are SU(4) symmetric: 

h + . . . f � h2

2f
+ . . .

L ⇥ �ytHAQA
3 ūA

3 � ytHBQB
3 ūB

3

[Chacko, Goh, Harnik ’05]

Higgs is a PNGB of ~SU(4), but partner 
states neutral under SM.

There are many more theories of this kind [NC, S Knapen, P Longhi ‘14]

⇠ 4⇡f

⇠ f

Z2

18

V (H) � 9
64�2

g2�2
�
|HA|2 + |HB |2
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Twin Signals
• Modest Higgs coupling deviations and 

invisible branching ratio (~5-10%). 

• Displaced decays: Higgs into hidden 
sector, hidden sector confines (must 
have twin QCD!), displaced decays via 
off-shell Higgs. 

• Singlet-like heavy Higgs decaying to 
hh, WW, ZZ, invisible. 

• Abundant dark matter candidates 
(thermal, asymmetric, SIMP, …)
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Not yet meaningfully constrained; naturalness 
potentially probed to ~20% level by end of LHC
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See also J. Shelton’s talk
[NC, Katz, Strassler, Sundrum ‘15]



5. Not symmetries?
? Naturalness 
✓ Dark matter 
✓ Unification

What if the weak scale is selected 
by dynamics, not symmetries?

See also E. Masso’s talk

4

barriers grow by a tiny fractional amount compared to ⇤QCD per step. Classically � stops rolling as soon as the slope
of its potential changes sign. However since gf ⌧ m2

W, the slope of the first barrier after this point is exceedingly
small, much smaller than ⇤4/f . Therefore around this point, quantum fluctuations of � will be relevant. The field �
will be distributed over many periods f (see Figure 2), but in all of these the Higgs will have a weak-scale vev. This
quantum spreading is an unfortunate feature of the model. As the universe inflates, di↵erent patches of the universe
will have a range of � field values and a range of Higgs vevs, but all around the weak scale. In future work, we will
show it is possible to build models which land the full initial patch in a single vacuum, thus removing this unfortunate
feature of our solution [18].

(a)

(b)

(c)

(d)

V (�)

�

FIG. 2: A close up of the region of �’s potential as the barriers appear. The evolution in these regions are (a) classical rolling
dominated, (b) dominated by quantum fluctuations in the steps but classically unstable, (c) classically stable, but quantum
fluctuations/tunneling rates shorter than N e-folds, and (d) classically stable, quantum transition rates longer than both N
e-folds and 10 Gyr. Again, for clarity, the potential is not to scale.

Some of the resulting � range is before the classical stopping point and is therefore classically unstable. The rest
is in � vacua with varying potential barrier heights. Thus, if inflation lasts longer than ⇠ 10 Gyr this will easily
guarantee that most patches populate the stable-enough vacua. It turns out that the requirement that inflation last
longer than 10 Gyr is automatically satisfied if we satisfy the constraints Eqns. (4), (5), and (7) and we are in the
part of parameter space where the cuto↵ M is as large as possible. Therefore, it is highly likely to end up in a patch
of the universe which is at the weak scale and lives much longer than 10 Gyr. Interestingly, it is easy to find models
of inflation which last longer than the entire age of the universe after reheating (see Section IV). As a result of these
multiple vacua there will be domain walls after reheating in the full initial patch of the universe. However these
domain walls will be spaced by distances much larger than our current Hubble size because we have much more than
60 e-folds of inflation in any one vacuum, and are therefore not observable.

We wish to avoid eternal inflation in our scenario because at least some part of the universe would end up with a
Higgs vev above the weak scale. The decay rates to such vacua are exponentially suppressed but with a long enough
period of inflation, some fraction of the universe would end up there before reheating. Although this might naively
seem like a very small part of the universe, if we wish to avoid discussion of measures in eternal inflation we must
avoid this possibility. As noted above, even if we do not have eternal inflation, we unfortunately cannot avoid ending
up in a large range of vacua. But since all these vacua have weak scale Higgs vevs, we call this a solution to the
hierarchy problem. Of course, we have not solved the cosmological constant (CC) problem. This set of final vacua
will all have di↵erent cosmological constants. If the solution to the CC problem is just tuning, then we must live in

(�M2 + g�)|H|2 + V (g�) +
1

32⇡2

�

f
G̃µ⌫Gµ⌫

(�M2
+ g�)|H|2 + V (g�) + ⇤

4
cos(�/f))

[Graham, Kaplan, Rajendran ‘15]

Old idea: couple Higgs to field whose minimum sets mH=0 
Old problem: How to make mH=0 a special point of potential?

GKR solution: what turns on 
when mH2 goes negative? 
Vev gives quark masses 

which give axion potential! 

“Relaxion”
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M <

✓
⇤4M3

P

f

◆1/6

✓1/4 ⇠ 30 TeV ⇥
✓
109 GeV

f

◆1/6 ✓
✓

10�10

◆1/4

• Very low Hubble scale (≪ΛQCD) • 10 Giga-years of inflation

Minimal model: cutoff is

Just need Higgs + non-compact axion + inflation w/

In vacuum, axion gives O(1) contribution to θQCD 
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M <

✓
⇤4M3

P

f

◆1/6

✓1/4 ⇠ 30 TeV ⇥
✓
109 GeV

f

◆1/6 ✓
✓

10�10

◆1/4

• Very low Hubble scale (≪ΛQCD) • 10 Giga-years of inflation

Minimal model: cutoff is

Just need Higgs + non-compact axion + inflation w/

In vacuum, axion gives O(1) contribution to θQCD 

Fix: make it someone else’s QCD + axion

L � mLLL
c +mNNN c + yHLN c + y0H†LcN

1. New quarks must get most of mass from Higgs:

2. Must confine, but with light flavor ⇤4 ' 4⇡f3
⇡0mN

I.e. axion of a 
different SU(3); 
need to tie in 

Higgs vev

Field SU(3)N SU(3)C SU(2)L U(1)Y
L ⇤ � ⇤ �1/2
Lc ⇤ � ⇤ +1/2
N ⇤ � � 0
N c ⇤ � � 0
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…still new physics @ weak scale
mN � yy0v2/mLNow

But also
mN � yy0

16⇡2mL log(M/mL)

mN � yy0f2
⇡0/mL

{

Can’t decouple new degrees of freedom.!
New confining physics near weak scale!

M <

✓
⇤4M3

P

f

◆1/6

⇠ 3⇥ 105 TeV ⇥
✓
109 GeV

f

◆1/6 ✓
f⇡0

30 GeV

◆1/2 ✓ yy0

10�2

◆1/6 ✓300 GeV

mL

◆1/6

(smallest see-saw mass 
from EWSB if L heavy)

(Radiative Dirac mass)

(Higgs wiggles biggest)

f⇡0 < v and mL <
4⇡vp

log(M/mL)
These bounds imply

Couples to Higgs; hidden valley signatures
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Conclusions
• Hierarchy problem as pressing as ever; SUSY remains a 

strongly motivated explanation.

• Null results from Run 1 are moderately constraining, but Run 
2 will be a crucial probe of natural SUSY.

• Either way, null results should provoke us to think broadly!

• Many novel ideas being explored, with a range of new 
consequences for LHC and other experiments. Higgs-related 
physics and rich hidden sectors a common feature.

• Far more out there to explore!

Thank you!


