Implications of SUSY Searches for BSM

Nathaniel Craig UC Santa Barbara

Hierarchy Problem

Elementary scalars are quadratically sensitive to physics at higher scales.

Independent of regularization scheme.

Model-building scales aside, gravity attests to presence of a higher scale.

No viable proposals for mitigating sensitivity to physics @ Planck scale *without* new physics @ weak scale.

Hierarchy problem only sharpened with the discovery of an elementary SM-like Higgs (+nothing else so far).

Natural vs. unnatural

Hierarchy problem is not a "just-so story"

Field Symmetry as $m \to 0$ Implication $\Psi \to e^{i\theta} \Psi$ Spin-1/2 $m\Psi\bar{\Psi}$ $\delta m \propto m$ $\bar{\Psi} \to e^{-i\theta} \bar{\Psi}$ **Natural!** (chiral symmetry) Spin-1 $m^2 A_\mu A^\mu$ $A_{\mu} \to A_{\mu} + \partial_{\mu} \alpha$ $\delta m \propto m$ (gauge invariance) **Natural!** •mSpin-0 $m^2|H|^2$ $\delta m \propto \Lambda$ None **Unnatural!** З

Electroweak naturalness

Make the Higgs mass technically natural by introducing symmetries

 $m_h^2 \sim \frac{3y_t^2}{4\pi^2} \tilde{m}^2 \log(\Lambda^2/\tilde{m}^2)$ Totally natural: $\tilde{m} \lesssim 200 \,\text{GeV}$

The naturalness strategy

This is a *strategy* for new physics near m_h, not a *no-lose theorem*, because the theory does not break down if it is unnatural.

But naturalness has often been a very *successful* strategy.

E.g. charged pions

Electromagnetic contribution to the charged pion mass sensitive to the cutoff of the pion EFT.

$$\delta m^2 \sim \frac{3e^2}{16\pi^2} \Lambda^2$$

Naturalness suggests Λ ~850 MeV. Rho meson (new physics!) enters at 770 MeV.

A physics driver @ LHC

170 of these 226 channels tied to naturalness

AT	LAS SUSY Sea	arches	* - 9	5% (CL L	ower Limits	ATLA	S Preliminar
Stat	tus: Feb 2015							$\sqrt{s} = 7, 8 \text{ TeV}$
	Model	<i>e</i> , μ, τ, γ	Jets	E ^{miss} _T	∫£ dt[fb	⁻¹] Mass limit		Reference
Inclusive Searches	$ \begin{split} & MSUGRACMSSM \\ & \bar{q}_{1}, \bar{q}_{-} q_{1}^{2} \\ & \bar{q}_{1}, \bar{q}_{-} q_{1}^{2} \\ & \bar{g}_{1}, \bar{q}_{-} q_{1}^{2} \\ & \bar{g}_{2}, \bar{g}_{-} - q q_{1}^{2} - q q \\ & \bar{g}_{2}, \bar{g}_{-} - q q_{1}^{2} - q q \\ & \bar{g}_{2}, \bar{g}_{-} - q q \\ & \bar{g}_{1}, \bar{g}_{-} - q q \\ & \bar{g}_{1}, \bar{g}_{-} - q \\ & \bar{g}_{1}, $	$\begin{matrix} 0 \\ 0 \\ 1 & \gamma \\ 0 \\ 1 & e, \mu \\ 2 & e, \mu \\ 1 & 2 & \tau + 0 - 1 & \ell \\ 2 & \gamma \\ 1 & e, \mu + \gamma \\ \gamma \\ 2 & e, \mu & (Z) \\ 0 \end{matrix}$	2-6 jets 2-6 jets 0-1 jet 2-6 jets 3-6 jets 0-3 jets 0-2 jets - 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20 20 20.3 20.3 20.3 4.8 4.8 5.8 20.3	4.2 1.7 TeV 4 850 GeV 4 250 GeV 8 1.3 TeV 8 1.2 TeV 9 1.5 TeV 8 900 GeV 8 900 GeV 8 690 GeV 8 690 GeV	$\label{eq:constraints} \left\{ \begin{array}{l} m(\tilde{q}) - m(\tilde{g}) \\ m(\tilde{q}) - OGV, m(1^{*} \text{ gen. } q) - m(2^{**} \text{ gen. } q) \\ m(\tilde{q}) - m(\tilde{q}) \\ m(\tilde{q}) - OGV \\ m(\tilde{q}) - OGV \\ m(\tilde{q}) - OGV OGV, m(\tilde{q}^{*}) - 0.5(m(\tilde{q}^{*}) + m(\tilde{g})) \\ m(\tilde{q}) - OGV \\ m(\tilde{q}) - SO OGV \\ m(\tilde{q}) - 1.5 \ \text{TeV} \end{array} \right.$	1405.7875 1405.7875 1411.1559 1405.7875 1501.03555 1501.03555 1407.0603 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-1452 1502.01518
§ med.	$\bar{g} \rightarrow b \bar{b} \bar{\chi}_{1}^{0}$ $\bar{g} \rightarrow t \bar{\chi}_{1}^{0}$ $\bar{g} \rightarrow t \bar{\chi}_{1}^{0}$ $\bar{g} \rightarrow t \bar{\chi}_{1}^{0}$	0 0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	2 1.25 TeV 2 1.1 TeV 2 1.3 TeV 2 1.3 TeV 2 1.3 TeV	$\begin{split} m(\overline{v}_{1}^{0}) &< 400 \mbox{ GeV } \\ m(\overline{v}_{1}^{0}) &< 350 \mbox{ GeV } \\ m(\overline{v}_{1}^{0}) &< 400 \mbox{ GeV } \\ m(\overline{v}_{1}^{0}) &< 300 \mbox{ GeV } \end{split}$	1407.0600 1308.1841 1407.0600 1407.0600
direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{k}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{k}_{1}^{2} \\ \tilde{h}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{k}_{1}^{2} \\ \tilde{h}_{1}\tilde{h}_{1}, \tilde{h}_{1} \rightarrow b\tilde{k}_{1}^{0} \\ \tilde{h}_{1}\tilde{h}_{1}, \tilde{h}_{1} \rightarrow b\tilde{k}_{1}^{0} \\ \tilde{h}_{1}\tilde{h}_{1}, \tilde{h}_{1} \rightarrow b\tilde{k}_{1}^{0} \\ \tilde{h}_{1}\tilde{h}_{1}, \tilde{h}_{1} \rightarrow \tilde{k}_{1}^{0} \\ \tilde{h}_{1}\tilde{h}_{1}, \tilde{h}_{1} \rightarrow \tilde{k}_{1}^{0} \\ \tilde{h}_{1}\tilde{h}_{1}(\mathbf{n}) \\ \tilde{h}_{1}\tilde{h}_{1}(\mathbf{n}) \\ \tilde{h}_{1}\tilde{h}_{1}(\mathbf{n}) \\ \tilde{h}_{1}\tilde{h}_{1}(\mathbf{n}) \\ \tilde{h}_{1}\tilde{h}_{1}(\mathbf{n}) \\ \tilde{h}_{2}\tilde{h}_{2}, \tilde{h}_{2} \rightarrow \tilde{h}_{1} + Z \end{split} $	0 $2 e, \mu$ (SS) $1-2 e, \mu$ $2 e, \mu$ $0-1 e, \mu$ 0 m $2 e, \mu$ (Z) $3 e, \mu$ (Z)	2 b 0-3 b 1-2 b 0-2 jets 1-2 b ono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes ag Yes Yes Yes	20.1 20.3 4.7 20.3 20 20.3 20.3 20.3 20.3	j. 100-620 GeV b. 275-440 GeV 100-167 GeV 220-460 GeV 7. 90-191 GeV 210-530 GeV 7. 210-540 GeV 210-540 GeV 7. 90-240 GeV 210-550 GeV 7. 210-550 GeV 210-640 GeV 7. 210-640 GeV 210-550 GeV 7. 210-600 GeV 210-600 GeV	m(ငို)-590 GeV m(ငို)-22 m(ငို) m(ငို)-1 CeV m(ငို)-1 GeV m(ငို)-1 GeV m(ငို)-150 GeV m(ငို)-150 GeV m(ငို)-200 GeV	1308.2631 1404.2500 1209.2102, 1407.0583 1403.4853, 1412.4742 1407.0583, 1406.1122 1407.0508 1403.5222 1403.5222
direct	$\begin{split} \tilde{\ell}_{1,\mathbf{k}}\tilde{\ell}_{1,\mathbf{k}}, \tilde{\ell} \rightarrow \tilde{\ell}\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}\tilde{\chi}_{1}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}v(\tilde{r}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}v(\tilde{r}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}_{1}v\tilde{\ell}_{1}\ell(\tilde{v}v), \tilde{v}\tilde{\ell}_{1}\ell(\tilde{v}v) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \rightarrow \tilde{W}_{1}^{0}\tilde{\lambda}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \rightarrow \tilde{W}_{1}^{0}\tilde{\lambda}_{1}^{0}, h \rightarrow b\bar{b}/WW/\tau\tau/\gamma \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{*}, \tilde{\chi}_{2}^{*} \rightarrow \tilde{\ell}e\ell \end{split}$	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ γγ e,μ,γ 4 e,μ	0 0 - 0-2 jets 0-2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	λ 90-325 GaV ξ ² 140-455 GaV k ² ₁ 100-350 GeV k ² ₁ ,k ² ₂ 700 GeV k ² ₁ ,k ² ₂ 420 GeV k ² ₁ ,k ² ₂ 250 GeV k ² ₂ ,k ² ₂ 620 GeV	$\begin{split} m(\tilde{\epsilon}_{1}^{2})_OGeV \\ m(\tilde{\epsilon}_{1}^{2})_OGeV, m(\tilde{\epsilon}, \tilde{\epsilon})=0.5(m(\tilde{\epsilon}_{1}^{2})+m(\tilde{\epsilon}_{1}^{2})) \\ m(\tilde{\epsilon}_{1}^{2})_OGeV, m(\tilde{\epsilon}, \tilde{\epsilon})=0.5(m(\tilde{\epsilon}_{1}^{2})+m(\tilde{\epsilon}_{1}^{2})) \\ =&m(\tilde{\epsilon}_{1}^{2})_m(\tilde{\epsilon}_{1}^{2})_o.c, m(\tilde{\epsilon}, \tilde{\epsilon})=0.5(m(\tilde{\epsilon}_{1}^{2})+m(\tilde{\epsilon}_{1}^{2})) \\ m(\tilde{\epsilon}_{1}^{2})_m(\tilde{\epsilon}_{2}^{2})_m(\tilde{\epsilon}_{1}^{2})_o.c, sleptons decoupled \\ m(\tilde{\epsilon}_{1}^{2})_m(\tilde{\epsilon}_{1}^{2})_o.c, m(\tilde{\epsilon}, \tilde{\epsilon})=0.5(m(\tilde{\epsilon}_{1}^{2})+m(\tilde{\epsilon}_{1}^{2})) \\ m(\tilde{\epsilon}_{1}^{2})_m(\tilde{\epsilon}_{1}^{2})_o.c, m(\tilde{\epsilon}, \tilde{\epsilon})=0.5(m(\tilde{\epsilon}_{1}^{2})+m(\tilde{\epsilon}_{1}^{2})) \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086
particles	$ \begin{array}{l} \text{Direct} \ \tilde{\chi}_1^+ \tilde{\chi}_1^- \ \text{prod., long-lived} \ \tilde{\chi}_1^+ \\ \text{Stable, stopped } \ \bar{g} \ \text{R-hadron} \\ \text{Stable } \ \bar{g} \ \text{R-hadron} \\ \text{GMSB, stable } \ \tilde{\tau}, \ \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, , \\ \text{GMSB, } \ \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}, \ \text{long-lived} \ \tilde{\chi}_1^0 \\ \ \tilde{q} \ \tilde{q}, \ \tilde{\chi}_1^0 \rightarrow q \mu \ (\text{RPV}) \\ \end{array} $	Disapp. trk 0 trk μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - - -	Yes Yes - - Yes -	20.3 27.9 19.1 19.1 20.3 20.3	xi 270 GeV ž 832 GeV ž 1.27 TeV xi 537 GeV xi 435 GeV i 1.0 TeV	$\begin{split} &m(\tilde{k}_{1}^{1}){-}m(\tilde{k}_{1}^{0}){=}160 \; \text{MeV}, r(\tilde{k}_{1}^{1}){=}0.2 \; \text{ns} \\ &m(\tilde{k}_{2}^{0}){=}100 \; \text{GeV}, 10 \; \mu\text{s}{<}r(\tilde{g}){<}100 \; \text{s} \\ &10{<}tan\beta{<}50 \\ &2{<}r(\tilde{k}_{1}^{0}){<}3 \; \text{ns}, \text{SPS8} \; \text{model} \\ &1.5 \; < rr{<}156 \; \text{mm}, \text{BR}(\mu){=}1, m(\tilde{k}_{1}^{0}){=}108 \; \text{GeV} \end{split}$	1310.3675 1310.6584 1411.6795 1411.6795 1409.5542 ATLAS-CONF-2013-092
A 111	$ \begin{array}{l} LFV pp \rightarrow \bar{v}_\tau + X, \bar{v}_\tau \rightarrow e + \mu \\ LFV pp \rightarrow \bar{v}_\tau + X, \bar{v}_\tau \rightarrow e(\mu) + \tau \\ Bilinear RPV CMSSM \\ \bar{\chi}^+_1 \bar{\chi}^+_1, \bar{\chi}^+_1 \rightarrow W \bar{\chi}^0_1 \bar{\chi}^0_1 \rightarrow ee\bar{v}_\mu, e\mu \bar{v}_e \\ \bar{\chi}^+_1 \bar{\chi}^1, \bar{\chi}^+_1 \rightarrow W \bar{\chi}^0_1, \bar{\chi}^0_1 \rightarrow \tau \tau \bar{v}_e, e\tau \bar{v}_\tau \\ \bar{g} \rightarrow qqq \\ \bar{g} \rightarrow \bar{t}_1 t, \bar{t}_1 \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	0-3 b - - 6-7 jets 0-3 b	- Yes Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	5. 1.61 TeV 7. 1.1 TeV 4.2 750 GeV 4.2 750 GeV 7. 2 916 GeV 2 916 GeV	$\begin{split} \lambda_{311}^{*} &= 0.10, \lambda_{132}^{*} = 0.05 \\ \lambda_{111}^{*} &= 0.10, \lambda_{1(211)}^{*} = 0.05 \\ m(\hat{q}) = m(\hat{q}), c_{121} e^{-1} \ mm \\ m(\hat{r}_{1}^{*}) = 0.2 m(\hat{r}_{1}^{*}), \lambda_{131}^{*} = 0 \\ m(\hat{r}_{1}^{*}) = 0.2 m(\hat{r}_{1}^{*}), \lambda_{131}^{*} = 0 \\ BR(p) = BR(b) = BR(c) = 0\% \end{split}$	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
her	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_{1}^{0}$	0	2 c	Yes	20.3	č 490 GeV	m(${ ilde t}_1^0$)<200 GeV	1501.01325
	$\sqrt{s} = 7 \text{ TeV}$ full data pa	$\sqrt{s} = 8 \text{ TeV}$ artial data	$\sqrt{s} = \frac{1}{100}$	8 TeV data	1	J ⁻¹ 1	Mass scale [TeV]	•

ly a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty

6

The case for SUSY Why SUSY? Why not?

- ✓ Naturalness
- ✓ Dark matter
- ✓ Unification
- ✓ Higgs mass
- ✓ Decoupling

SUSY contains multitudes!

Minimal ingredients

At the very least: organize minimal spectrum for naturalness by size of threshold corrections to Higgs

$$m_h^2 \sim \frac{3y_t^2}{4\pi^2} \tilde{m}^2 \log(\Lambda^2/\tilde{m}^2)$$

QCD production of stops, gluinos makes natural target for LHC (but also look for electroweak physics @ electroweak scale)

[Dimopoulos, Giudice '95; Cohen, Kaplan, Nelson '96; Papucci, Ruderman, Weiler '11; Brust, Katz, Lawrence, Sundrum '11]

Natural SUSY was in the "Old Testament"

Direct limits

Scalar top searches: greatest reach for SUSY naturalness

> Where we are: "generically"

$$m_h^2 \sim \frac{3y_t^2}{4\pi^2} \tilde{m}^2 \log(\Lambda^2/\tilde{m}^2)$$

Looking forward

If stops are just outside our current reach, an abundance of new physics awaits in Run 2. If not...

1. Natural SUSY?

[Wells '03; Giudice & Romanino '04; Arkani-Hamed & Dimopoulos '04]

2. Unnatural SUSY?

What if SUSY has nothing to do with stabilizing the weak scale?

"(mini-)Split SUSY"

- / Dark matter
- ✓ Unification

Scalars decouple, fermions are light (unification/DM)

Gluino, higgsino signals @ LHC

Gluino decays prompt or displaced

Unnatural but simple

And still 28 orders of magnitude more natural than SM

15

[Georgi & Kaplan '84; Arkani-Hamed, Cohen, Katz, Nelson, Gregoire '02; Contino, Nomura, Pomarol '03]

3. Global symmetries?

What about the "other" symmetry (global) for the Higgs mass?

"Composite Higgs/Little Higgs"

Need light QCD-charged top partners; bounds and tuning comparable to SUSY.

4. Radical symmetries?

What if the weak scale is natural, but the new states are SM neutral?

"Neutral naturalness"

Folded SUSY Twin Higgs 5 TeV [Chacko, Goh, Harnik] [Burdman, Chacko, Harnik] W',Z' $\widetilde{t}_{I} = \widetilde{t}_{R} = \widetilde{b}_{I}$ ťi ťr b'ı h • • • • • • • 17

Strong SUSY bounds have nothing to do with couplings to Higgs.

Reach comes from QCD quantum #'s

Can we have natural theories without colored partner states?

Yes

[Chacko, Goh, Harnik '05]

There are many more theories of this kind [NC, S Knapen, P Longhi '14]

See also J. Shelton's talk

Twin Signals

- Modest Higgs coupling deviations and invisible branching ratio (~5-10%).
- Displaced decays: Higgs into hidden sector, hidden sector confines (must have twin QCD!), displaced decays via off-shell Higgs.
- Singlet-like heavy Higgs decaying to hh, WW, ZZ, invisible.
- Abundant dark matter candidates (thermal, asymmetric, SIMP, ...)

Not yet meaningfully constrained; naturalness potentially probed to $\sim 20\%$ level by end of LHC

[Graham, Kaplan, Rajendran '15]

See also E. Masso's talk

5. Not symmetries?

What if the weak scale is selected by dynamics, not symmetries?

Old idea: couple Higgs to field whose minimum sets $m_H=0$ Old problem: How to make $m_H=0$ a special point of potential?

Just need Higgs + non-compact axion + inflation w/

Very low Hubble scale (≪∧_{QCD})
10 Giga-years of inflation

Minimal model: cutoff is $M < \left(\frac{\Lambda^4 M_P^3}{f}\right)^{1/6} \theta^{1/4} \sim 30 \text{ TeV} \times \left(\frac{10^9 \text{ GeV}}{f}\right)^{1/6} \left(\frac{\theta}{10^{-10}}\right)^{1/4}$

In vacuum, axion gives O(1) contribution to θ_{QCD}

Just need Higgs + non-compact axion + inflation w/

Very low Hubble scale (≪∧_{QCD})
10 Giga-years of inflation

Minimal model: cutoff is $M < \left(\frac{\Lambda^4 M_P^3}{f}\right)^{1/6} \theta^{1/4} \sim 30 \text{ TeV} \times \left(\frac{10^9 \text{ GeV}}{f}\right)^{1/6} \left(\frac{\theta}{10^{-10}}\right)^{1/4}$

In vacuum, axion gives O(1) contribution to θ_{QCD}

Fix: make it someone else's QCD + axion

Field	$SU(3)_N$	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	La avian of a
L				-1/2	
L^c		—		+1/2	different SU(3);
N		_	_	0	need to tie in
N^c		_	_	0	Higgs vev

1. New quarks must get most of mass from Higgs:

 $\mathcal{L} \supset m_L L L^c + m_N N N^c + y H L N^c + y' H^{\dagger} L^c N$

2. Must confine, but with light flavor $\Lambda^4 \simeq 4\pi f_{\pi'}^3 m_N$

...still new physics @ weak scale

Now
$$m_N \ge y y' v^2 / m_L$$
 (smallest see-saw mass from EWSB if L heavy)

 $\left\{ \begin{array}{ll} m_N \geq \frac{yy'}{16\pi^2} m_L \log(M/m_L) & \text{(Radiative Dirac mass)} \\ m_N \geq yy' f_{\pi'}^2/m_L & \text{(Higgs wiggles biggest)} \end{array} \right.$

These bounds imply
$$f_{\pi'} < v$$
 and $m_L < \frac{4\pi v}{\sqrt{\log(M/m_L)}}$

Can't decouple new degrees of freedom. New confining physics near weak scale!

Couples to Higgs; hidden valley signatures

$$M < \left(\frac{\Lambda^4 M_P^3}{f}\right)^{1/6} \sim 3 \times 10^5 \text{ TeV } \times \left(\frac{10^9 \text{ GeV}}{f}\right)^{1/6} \left(\frac{f_{\pi'}}{30 \text{ GeV}}\right)^{1/2} \left(\frac{yy'}{10^{-2}}\right)^{1/6} \left(\frac{300 \text{ GeV}}{m_L}\right)^{1/6}$$

Hierarchy problem as pressing as ever; SUSY remains a strongly motivated explanation.

- Hierarchy problem as pressing as ever; SUSY remains a strongly motivated explanation.
- Null results from Run 1 are moderately constraining, but Run 2 will be a crucial probe of natural SUSY.

- Hierarchy problem as pressing as ever; SUSY remains a strongly motivated explanation.
- Null results from Run 1 are moderately constraining, but Run 2 will be a crucial probe of natural SUSY.
- Either way, null results should provoke us to think broadly!

- Hierarchy problem as pressing as ever; SUSY remains a strongly motivated explanation.
- Null results from Run 1 are moderately constraining, but Run 2 will be a crucial probe of natural SUSY.
- Either way, null results should provoke us to think broadly!
- Many novel ideas being explored, with a range of new consequences for LHC and other experiments. Higgs-related physics and rich hidden sectors a common feature.

- Hierarchy problem as pressing as ever; SUSY remains a strongly motivated explanation.
- Null results from Run 1 are moderately constraining, but Run 2 will be a crucial probe of natural SUSY.
- Either way, null results should provoke us to think broadly!
- Many novel ideas being explored, with a range of new consequences for LHC and other experiments. Higgs-related physics and rich hidden sectors a common feature.
- Far more out there to explore!

Thank you!