

Multi-boson production at the LHC

Alexander Oh University of Manchester On behalf of the ATLAS and CMS collaborations

Multi-boson final states

- Rich physics program to test the electro-weak selfcoupling.
- Constrain new physics in the framework of effective
 Lagrangian and anomalous gauge couplings.
- Main background to many Higgs channels and BSM searches.
- Accessible couplings

- Triple gauge couplings (TGC)
 - Di-boson final states.
 - Vector Boson Fusion

- Quartic gauge couplings (QGC)
 - Tri-boson final states.
 - Vector Boson scattering / gamma-gamma induced exclusive production.

Overview

Overview

	Multiboson Cross	Section Measurements Status: March 2015		∫£ dt [fb ^{−1}]	Reference
	$\sigma^{\sf fid}(\gamma\gamma)[\Delta R_{\gamma\gamma} > 0.4]$	$\sigma = 44.0 + 3.2 - 4.2 \text{ pb (data)} \\ 2\gamma \text{NNLO (theory)} $	ATI AS Preliminary	4.9	JHEP 01, 086 (2013)
	$\sigma^{\rm fid}(W\gamma \to \ell v\gamma) - [n_{\rm iet} = 0]$	$\sigma = 2.77 \pm 0.03 \pm 0.36 \text{ pb} (\text{data})$ NNLO (theory) $\sigma = 1.76 \pm 0.03 \pm 0.22 \text{ pb} (\text{data})$ NNLO (theory)	Run 1 $\sqrt{s} = 7, 8 \text{ TeV}$	4.6 4.6	PRD 87, 112003 (2013) arXiv:1407.1618 [hep-ph] PRD 87, 112003 (2013)
	$\sigma^{\rm fid}(Z\gamma \rightarrow \ell \ell \gamma) \ - [n_{\rm jet} = 0]$	$\sigma = 1.31 \pm 0.02 \pm 0.12 \text{ pb (data)}$ $\sigma = 1.05 \pm 0.02 \pm 0.11 \text{ pb (data)}$ NNLO (theory)		4.6 4.6	PRD 87, 112003 (2013) arXiv:1407.1618 [hep-ph] PRD 87, 112003 (2013)
→	$\sigma^{ m fid}(W\gamma\gamma ightarrow \ell u\gamma\gamma) \ - [n_{ m jet} = 0]$	$\sigma = 6.1 + 1.1 - 1.0 \pm 1.2 \text{ fb} (\text{data})$ MCFM NLO (theory) $\sigma = 2.9 + 0.8 - 0.7 + 1.0 - 0.9 \text{ fb} (\text{data})$ MCFM NLO (theory)	Δ	20.3 20.3	arXiv:1503.03243 [hep-ex] arXiv:1503.03243 [hep-ex]
→	$\frac{\sigma^{\text{fid}}(pp \rightarrow WV \rightarrow \ell \nu qq)}{\sigma^{\text{fid}}(W^{\pm}W^{\pm}jj) \text{ EWK}}$	$\sigma = 1.37 \pm 0.14 \pm 0.37 \text{ pb (data)}$ $\sigma = 1.3 \pm 0.4 \pm 0.2 \text{ (b (data)}$ PowhegBox (theory)		4.6 20.3	JHEP 01, 049 (2015) PRL 113, 141803 (2014)
\rightarrow	$\sigma^{\text{total}}(\text{pp}\rightarrow\text{WW}) \\ -\sigma^{\text{fid}}(\text{WW}\rightarrow\text{ee}) [n_{\text{iet}}=0]$	$ \sigma = 51.9 \pm 2.0 \pm 4.4 \text{ pb (data)} \\ \text{MCFM (theory)} \\ \sigma = 71.4 \pm 1.2 \pm 5.5 - 4.9 \text{ pb (data)} \\ \text{MCFM (theory)} \\ \sigma = 56.4 \pm 6.8 \pm 10.0 \text{ b (data)} \\ \text{MCFM (theory)} \\ \end{array} $		4.6 20.3 4.6	PRD 87, 112001 (2013) ATLAS-CONF-2014-033 PRD 87, 112001 (2013)
	$-\sigma^{\text{fid}}(WW \rightarrow \mu\mu) [n_{\text{jet}} = 0]$ $-\sigma^{\text{fid}}(WW \rightarrow e\mu) [n_{\text{jet}} = 0]$ $-\sigma^{\text{fid}}(WW \rightarrow e\mu) [n \ge 0]$	$\sigma = 73.9 \pm 5.9 \pm 7.5$ fb (data) MCFM (theory) $\sigma = 262.3 \pm 12.3 \pm 23.1$ fb (data) MCFM (theory) $\sigma = 563.0 \pm 28.0 + 79.0 - 85.0$ fb (data)	LHC pp $\sqrt{s} = 7$ TeV Theory	4.6 4.6	PRD 87, 112001 (2013) PRD 87, 112001 (2013)
	$\frac{-\sigma^{\text{total}}(WVV \rightarrow e\mu) [n_{\text{jet}} \ge 0]}{\sigma^{\text{total}}(pp \rightarrow WZ)} - \sigma^{\text{fid}}(WZ \rightarrow \ell \nu \ell \ell)$	$ \begin{array}{c} \sigma = 19.0 + 1.4 - 1.3 \pm 1.0 \ \text{pb} \ \text{(data)} \\ \sigma = 20.3 + 0.8 - 0.7 + 1.4 - 1.3 \ \text{pb} \ \text{(data)} \\ \text{MCFM (theory)} \\ \sigma = 99.2 + 3.8 - 3.0 + 6.0 - 6.2 \ \text{fb} \ \text{(data)} \\ \text{MCFM (theory)} \end{array} $	Observed stat stat+syst	4.6 13.0 13.0	EPJC 72, 2173 (2012) ATLAS-CONF-2013-021 ATLAS-CONF-2013-021
	$\sigma^{\text{total}}(pp \rightarrow ZZ)$ $-\sigma^{\text{total}}(pp \rightarrow ZZ \rightarrow 4\ell)$ $-\sigma^{\text{fid}}(ZZ \rightarrow 4\ell)$	$ \sigma = 6.7 \pm 0.7 + 0.5 - 0.4 \text{ pb (data)} $ $ \sigma = 7.1 + 0.5 - 0.4 \pm 0.4 \text{ pb (data)} $ $ \sigma = 7.1 + 0.5 - 0.4 \pm 0.4 \text{ pb (data)} $ $ \sigma = 0000000000000000000000000000000000$	Theory Observed stat stat+syst	4.6 20.3 4.5 20.3 4.6 20.3	JHEP 03, 128 (2013) ATLAS-CONF-2013-020 arXiv:1403.5657 [hep-ex] arXiv:1403.5657 [hep-ex] JHEP 03, 128 (2013) ATLAS-CONF-2013-020
	$-\sigma^{\operatorname{fid}}(ZZ^*\to 4\ell) -\sigma^{\operatorname{fid}}(ZZ^*\to \ell\ell\nu\nu)$	$\sigma = 29.8 + 3.3 + 2.1 - 1.9 \text{ (b) (data)}$ $\sigma = 12.7 + 3.1 - 2.9 \pm 1.8 \text{ (b) (data)}$ PowhegBox & gg2ZZ (the provided by the provided by		4.6 4.6	JHEP 03, 128 (2013) JHEP 03, 128 (2013)
3		0.2 0.1 0.0 0.0 1.0 1.2	observed/theory		

The University of Manchester

WW production

- Signature two leptons and MET.
- Small contribution (3%) from gg:

- Important background to H->WW.
- Study of charge triple gauge boson vertex.
- Run-1 results: ATLAS (20ifb 8TeV), CONF-2014-033 CMS (20ifb 8TeV), CMS-PAS-SMP-14-016

WW production

			ATLAS	CMS	S	
		Fiduo	cial and total cross sec	tion.		
	H→WW		signal	bacl	kground	
	Signal Accept	otance	~5%	~4.2	2%	
Selection		ATLAS		CN	MS	
2 leptons OS		e,μ : p _T >20 GeV		е,	e,µ : p _T >20 GeV	
		p _T (l ₁) >25 GeV				
m(ll)		> 15 GeV (ee, μμ), > 10 GeV (eμ)		> :	> 12 GeV	
Z veto (m _{ll} -m _z		< 15GeV		< 2	< 15GeV	
E _T ^{miss} (rel)		> (45,45,15) GeV, (μμ,ee,eμ)		>2	> 20 GeV	
additional cuts		p _T ^{miss} > (45,45,20) GeV, (μμ,ee,eμ) Δφ (p _T ^{miss} ,E _T ^{miss})<0.6		M	MVA to reduce Drell Yan	
Jet veto		N>0, pT>2 kt,DR=0.4	0, pT>25GeV, eta <4.5,anti- DR=0.4		N>1, pT>25GeV, eta <4.5,anti-kt,DR=0.4	
heavy flavour		-		to	p veto	

Signal definition – Backgrounds – Systematics – Results

Backgrounds WW

- **Dominant backgrounds** ullet
 - Top pair

MANCHESTER

- Use control regions to estimate top contribution.
- V+jets
 - Estimate probability of jets • being identified as leptons.
- diboson
 - Use MC prediction (ATLAS).
 - Wγ* normalised to control regions in data (CMS).

Background	ATLAS	CMS
top	52%	42%
W+j	15%	26%
Z+j	20%	10%
diboson	14%	12%
other (higgs)		10%
total bkg	28%	26%
total events exp	5787	6981

MANCHESTER

Systematic uncertainties WW

Source Uncertainty (%) Statistical uncertainty 1.5 Cross section \bullet Luminosity 2.6 uncertainty Lepton efficiency 3.8 Lepton momentum scale 0.5- Theory 3-4% $E_{\rm T}^{\rm miss}$ resolution 0.7 Jet energy scale 1.7 dominant tt+tW normalization 2.2 Jet veto (ATLAS) 1.3 W + jets normalization $Z/\gamma^* \rightarrow \ell^+ \ell^-$ normalization Jet counting (CMS) 0.6 $Z/\gamma^*
ightarrow au^+ au^-$ normalization 0.2 Experimental 4-6% $W\gamma$ normalization 0.3 $W\gamma^*$ normalization 0.4 dominant VV normalization 3.0Jet, MET related (ATLAS) $H \rightarrow WW$ normalization 0.8 lepton efficiency (CMS) 4.3 Jet counting theory model **PDFs** 1.2 background MC statistics 0.9 Total uncertainty 7.9 CMS

The University of Manchester

Results WW

Total cross section

CMS $60.1 \pm 0.9 \text{ (stat.)} \pm 3.2 \text{ (exp.)} \pm 3.1 \text{ (th.)} \pm 1.6 \text{ (lum.) pb.}$

ATLAS 71.4^{+1.2}_{-1.2} (stat) $^{+5.0}_{-4.4}$ (syst) $^{+2.2}_{-2.1}$ (lumi) pb.

NLO qqbar + LO gg + NNLO H

Results WW

MANCHESTER

The University of Manchestel

• Limits on charge aTGC in the EFT framework (CMS).

The University of Manchester

Multi-boson + 2 jets

• Study Vector Boson Scattering

Quartic vertex and Higgs tame the cross section at high *s*. Motivation: Discover VBS, set limits on BSM. Signature: Two jets and two <u>same sign</u> W.

• VBS topology: Two tagging jets, I⁺I⁺, missing energy

MANCHESTER

The University of Manchester

Signal definition – Backgrounds – Systematics – Results

Multi-boson + 2 jets

• Experimental results:

ATLAS – 8 TeV, 20 fb⁻¹ *Phys. Rev. Lett. 113, 141803 (2014),* http://arxiv.org/abs/1405.6241

CMS – 8 TeV, 20 fb⁻¹ *Phys. Rev. Lett. 114, 051801 (2015),* http://arxiv.org/abs/1410.6315 σ(QCD+EWK) σ(EWK only) anomalous couplings

σ(EWK only)
 anomalous couplings
 limits H⁺⁺, H⁻⁻

Multi-boson + 2 jets

• VBS topology: Two tagging jets, I⁺I⁺, missing energy

Object	ATLAS	CMS
2 leptons	e,µ	e,μ,(τ → e,μ)
lepton pT	> 25 GeV	> 20 GeV
η l(e, μ)	< 2.5	<2.5 (2.4)
m(II)	> 20 GeV	> 50 GeV
$\Delta R(I,I/j)$	> 0.3	> 0.3
2 jets anti-kT	R=0.4	R=0.5
рТ(ј)	> 30 GeV	> 30 GeV
η(j)	< 4.5	< 4.7
m(jj)	> 500 GeV	> 500 GeV
E _T ^{miss}	> 40 GeV	> 40 GeV

Signal definition – Backgrounds – Systematics – Results

MANCHESTER

Signal definition – Backgrounds – Systematics – Results

The University of Mancheste

Multi-boson + 2 jets

Main background sources:

prompt, conversions, other non-prompt.

- MC-based estimation:
 - *WZ* + jets
 - $W\gamma jj, tt+W/Z, ZZ$
 - Double parton scattering (negligible)
- Data-driven estimation:
 - Z + jets for *ee* and $e\mu$ channels (*e* charge miss identification)
 - Background with one or two jets mis-reconstructed as isolated leptons
- Top rejection (CMS)
 - Soft μ and b-jet detection to reduce top related backgrounds (tt, tW)

Multi-boson + 2 jets

Cross section extraction

- Profile likelihood ratio method, simultaneous fit over all three channels.
- CMS :

Fiducial volume definition extrapolating from signal selection:

- ATLAS:

Inclusive and VBS fiducial volumes corresponding to event selection.

pT(l) > 10 GeV |eta(l)| < 2.5 pT(j) > 20 GeV |eta(j)| < 5.0 m(jj) > 300 GeV |Δy(jj) > 2.5

Multi-boson + 2 jets

Events / bin 0

5

0

100

200

300

CMS

19.4 fb⁻¹ (8 TeV)

SM $F_{T_0} / \Lambda^4 = 0.0 \text{ TeV}^4$

400

m_{II} (GeV)

500

Data

• Anomalous couplings

- Effective theory to assess agreement with SM.
- Constrain additional operators to guard unitarity
- CMS :
 - Dim-8 operators, C,P conserving. m(II) differential cross section.
- ATLAS:

k-matrix unitarisation and α parameterisation VBS fiducial cross section.

MANCHESTER

• Tri-boson final state

- $-\gamma\gamma(W\rightarrow l\nu), l=e,\mu$
- First cross section measurement of triboson production.
 - Inclusive
 - Exclusive (no jets)
- Access to anomalous quartic gauge boson couplings.

Cuts	$pp ightarrow \ell \nu \gamma \gamma$		
Lepton	$p_{\rm T}^{\ell} > 20 {\rm GeV}$		
	$p_{\rm T}^{\hat{v}} > 25 { m GeV}$		
	$ \eta^\ell < 2.5$		
W-Boson	$m_{\rm T} > 40 {\rm GeV}$		
Photon	$E_{\rm T}^{\gamma} > 20 {\rm GeV}$		
	$ \eta^{\gamma} < 2.37$		
	$\Delta R(\ell, \gamma) > 0.7$		
	$\Delta R(\gamma, \gamma) > 0.4$		
	iso. fraction $\epsilon_h^p < 0.5$		
Jets	$p_{\rm T}^{\rm jet} > 30 {\rm GeV}$		
	$ \eta^{\rm jet} < 4.4$		
	$\Delta R(\ell, \text{jet}) > 0.3$		
	$\Delta R(\gamma, \text{jet}) > 0.3$		
	Exclusive selection: $N_{\text{iet}} = 0$		

- Backgrounds
 - $\frac{\text{from MC}}{-Z\gamma, Z\gamma\gamma, WZ,}$ $W(\tau\nu)\gamma\gamma$ -tt, WW
 - from Data
 - $-Wj, W\gamma j, \gamma\gamma j$

Fake photon estimated with two-dimensional template fit to transverse isolation distribution. Fake estimate dominant systematic ~ 20%.

Cross section

MANCHESTER

Wγ	γ	
	$\sigma^{ m fid}~[m fb]$	$\sigma^{\rm MCFM}$ [fb]
Inclusive $(N_{\text{jet}} \ge 0)$		
$\mu u\gamma\gamma$	7.1 $^{+1.3}_{-1.2}$ (stat.) ± 1.5 (syst.) ± 0.2 (lumi.)	
$e u\gamma\gamma$	4.3 $^{+1.8}_{-1.6}$ (stat.) $^{+1.9}_{-1.8}$ (syst.) ± 0.2 (lumi.)	2.90 ± 0.16
$\ell u\gamma\gamma$	6.1 $^{+1.1}_{-1.0}$ (stat.) ± 1.2 (syst.) ± 0.2 (lumi.)	
Exclusive $(N_{\rm jet} = 0)$		
$\mu u\gamma\gamma$	$3.5 \pm 0.9 \text{ (stat.)} ^{+1.1}_{-1.0} \text{ (syst.)} \pm 0.1 \text{ (lumi.)}$	
$e u\gamma\gamma$	$1.9 \ ^{+1.4}_{-1.1} (\text{stat.}) \ ^{+1.1}_{-1.2} (\text{syst.}) \ \pm 0.1 (\text{lumi.})$	1.88 ± 0.20
		1

 Anomalous couplings

Limits provided for non-unitarised and unitarised with dipol-formfactor.

The University of Manchestel

Summary

- **Run-1** allowed to explore di-boson production processes.
 - Most di-boson measurements systematically limited.
 - Rich legacy of 8TeV cross sections and unfolded distributions.
 - Tri-boson and VBS processes accessible.
- Awaiting combinations and Run-2 analysis.