# Results from Daya Bay Experiment

Bedřich Roskovec Charles University in Prague on behalf of the Daya Bay Collaboration

# Outline

- Day Bay Experiment
- Measurement of neutrino oscillation parameters in threeneutrino framework
- Search for light sterile neutrinos
- Measurement of reactor antineutrino energy spectrum and absolute flux

# Data Bay Experiment collaboration

## Asia (21)

Beijing Normal Univ., CGNPG, CIAE, Dongguan Polytechnic, ECUST, IHEP, Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Xian Jiaotong Univ., Zhongshan Univ., Chinese Univ. of Hong Kong, Univ. of Hong Kong, National Chiao Tung Univ., National Taiwan Univ., National United

### North America (17)

Brookhaven Natl Lab, CalTech, Illinois Institute of Technology, Iowa State, Lawrence Berkeley Natl Lab, Princeton, Rensselaer Polytechnic, Siena College, UC Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, UIUC, Univ. of Wisconsin, Virginia Tech, William & Mary, Yale



# Europe (2)

Charles University, JINR Dubna

South America(1)

Catholic University of Chile

# Daya Bay Layout

Ling Ao Near Hall

481 m from Ling Ao I

526 m from Ling Ao II

112 m overburden

#### Far Hall

1615 m from Ling Ao I1985 m from Daya Bay350 m overburden

Entrance

3 Underground Experimental Halls

> Daya Bay Near Hall 363 m from Daya Bay 98 m overburden

> > Daya Bay Cores

Ling Ao II Cores – Ling Ao I Cores

17.4 GW<sub>th</sub> power
 8 operating detectors
 160 t total target mass

## Antineutrino detector and muon tagging system

#### Antineutrino detector

- 3 separated regions GdLS, LS, MO
- 182x8" PMT
- 3 ACUs with radioactive sources for ulletweekly energy calibration

#### Muon tagging system

- ADs submerged in the water pool passive shielding  $(n, \gamma)$  and active muon detector
- Inner and outer optically separated regions • of the pool - two independent water Čerenkov detectors
- 4-layer resistive plate chamber array



# Antineutrino candidate selection





# Backgrounds

#### Background at Daya Bay

- Low background experiment with ~3% at Far Hall
- Precise measurement background systematic uncertainties well under control
- Uncorrelated
  - Accidental coincidence of two independent events which pass the selection criteria
- Correlated
  - <sup>9</sup>Li/<sup>8</sup>He -Unstable spallation products induced by cosmic muons
  - Fast neutrons Induced by cosmic muons
  - <sup>241</sup>Am-<sup>13</sup>C Correlated signal from calibration source in ACUs
  - <sup>13</sup>C(α,n)<sup>16</sup>O Signal induced by α interacting on carbon atoms



| Background                           | Near  | Far   | Uncertainty |
|--------------------------------------|-------|-------|-------------|
| Accidentals                          | 1.4%  | 2.3%) | negligible  |
| <sup>9</sup> Li∕ <sup>8</sup> He     | 0.4%  | 0.4%  | 50%         |
| <sup>241</sup> Am- <sup>13</sup> C   | 0.03% | 0.2%  | 50%         |
| Fast n                               | 0.1%  | 0.1%  | 30%         |
| <sup>13</sup> C(α,n) <sup>16</sup> O | 0.01% | 0.1%  | 50%         |

## Timeline of the Daya Bay



## 3-neutrino oscillation analysis



## Result of the oscillation parameters

• Best fit:  $\sin^2 2\theta_{13} = 0.084 \pm 0.005$   $|\Delta m_{ee}^2| = 2.42 \pm 0.011 \times 10^{-3} \text{ eV}^2$  $\chi^2/NDF = 134.6/146$ 

#### sin<sup>2</sup>20<sub>13</sub> measurement

- Most precise measurement up to date
- Precision  $6\% \rightarrow 3\%$  by the end of 2017
- Crucial measurement for experiments searching for CP-violation in lepton sector
- Δm<sup>2</sup>ee measurement
  - Comparable precision with long baseline accelerator experiments
  - Consistent result



# Results of nH analysis

#### Key information about nH analysis

- Rate analysis based on 6 AD data taking
- Independent measurement of θ<sub>13</sub> due to largely different systematics from nGd
- Higher statistics due to additional 20 t of LS as a target mass
- More accidental background mainly caused by lower delayed signal energy and longer capture time

#### Differences in selection

- Coincidence time: 1 μs<dt<400 μs</li>
- Prompt energy cut: 1.5 MeV<Ep<12 MeV
- Delayed energy cut: ±3σ around nH peak
- Distance cut: dR<0.5 m

```
• Best fit:

\sin^2 2\theta_{13} = 0.083 \pm 0.018

\chi^2 / NDF = 4.5/4
```



#### Phys. Rev. D 90, 071101 (2014)

## Light sterile neutrino search results





# Summary

### Data Bay Experiment provided

• Most precise measurement of  $\sin^2 2\theta_{13}$  and  $|\Delta m^2_{ee}|$  with comparable precision to the accelerator experiments

 $\sin^2 2\theta_{13} = 0.084 \pm 0.005$  $|\Delta m_{ee}^2| = 2.42 \pm 0.011 \times 10^{-3} \,\text{eV}^2$ 

 Independent measurement sin<sup>2</sup>2θ<sub>13</sub> using neutron capture on hydrogen

$$\sin^2 2\theta_{13} = 0.083 \pm 0.018$$

- Most stringent limit for neutrino mixing to light sterile neutrino for new mass squared splitting  $|\Delta m^2_{41}| < 0.1 \text{ eV}^2$
- Reactor antineutrino spectrum inconsistent with traditional predictions
- Reactor antineutrino flux consistent with other experiments but inconsistent with predictions

Backup slides

## Evolution of the $sin^22\theta_{13}$ value



## Reactor power correlated with detected IBD rate



# Ab initio calculation of reactor antineutrino energy spectrum



D.Dwyer, T.Langford: Phys. Rev. Lett. 114, 012502 (2015)