

The Standard Electroweak Model

Parameters Related to Z, W properties

- 3 parameters at tree level: $M_Z = \frac{v (g^2 + g'^2)}{2}$ $M_W = \frac{v |g|}{2}$ $\cos \theta_W = \frac{M_W}{M_Z}$
- + radiative corrections

 $M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi\alpha(1 + \Delta r)}{G_F M_Z^2}} \right)$ $M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi\alpha(1 + \Delta r)}{G_F M_Z^2}} \right)$

- \rightarrow With m_H, the model is over-constraint
- → EW precision measurements allows consistency checks of the theory

Interactions

Global Electroweak Fit

[http://cern.ch/gfitter]

obal EW fit

leasurement

direct determination

- Radiative corrections:
 - \rightarrow W, Z measurements sensitive to m₊, m_H

Free parameters in fit

3

Global Electroweak Fit

E. Sauvan – LAPP Annecy

Precision on m_w

- $\delta(m_w) < 10 \text{ MeV}$ \rightarrow Independent check of $\sin^2 \theta_{eff}^{l}$
- Tevatron is still leading this measurement : $\delta(m_w) = 16 \text{ MeV}$

h m_w measurements now dominated by modeling

m_w Measurement Strategy

• Fits to transverse distributions: p_T^{lepton} , p_T^{ν} , $m_T^{W} = \sqrt{2p_T^{\ell}p_T^{\nu}(1-\cos\Delta\phi)}$

 $\rightarrow m_{\tau}^{W}$ more sensitive to experimental effects (pile-up at the LHC)

 $\rightarrow p_{T}^{lepton}$ more sensitive to theory uncertainties: PDFs, p_{T}^{W} modeling

- Source of the physics model
- Minimise the model dependence in the analysis

PDF effects on p_{\tau}^{\prime}, m_{\tau}^{W} distributions

- Effect of u_v, d_v and sea uncertainties on W polarisation
- Effect of charm initiated W production

PDF uncertainties on m_w

	MW-NLO	CT10nlo	MSTW2008CPdeutnlo	NNPDF30_nlo_a	s_118
W^+	+13 -12	+18 -22	+11 -10	+8 -10	[MeV
W^-	+22 -22	+18 -23	+11 -10	+8 -9	•
W^{\pm}	+11 -11	+14 -18	+7 -7	+6 -5	

[ATL-PHYS-PUB-2014-015]

E. Sauvan – LAPP Annecy

- \rightarrow More pronounced in pp than pp
- \rightarrow Directly affect p_{τ}^{lepton}

[Krasny et al, EPJ C69 (2010) 379]

 \rightarrow Harder p_{τ}^{W}

🔌 ~ 10 MeV uncertainty

But 20-30 MeV from differences between PDF sets

Measurement of $\sin^2\theta_w$ in pp or $p\overline{p}$

- In Drell-Yan Z events $q\bar{q} \rightarrow Z/\gamma^* \rightarrow \ell^+ \ell^-$
 - Vector and axial-vector couplings
 - Asymmetry in the distribution of negative lepton polar angle wrt. axis of the incoming quark, in the dilepton CM,

$$\sigma_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$$

→ A_{FB} depends on flavour, charge of initial partons

▶ PDF dependence

In pp: direction of q ambiguous
 Dilution

$sin^2\theta_w$: a recent measurement at LHC

[ATLAS arXiv:1503.03709]

Use of forward electrons with central-forward topologies

➔ Best sensitivity

Uncertainty source	$\begin{array}{c} \text{CC electrons} \\ [10^{-4}] \end{array}$	CF electrons $[10^{-4}]$	$\frac{Muons}{[10^{-4}]}$	Combined $[10^{-4}]$
PDF	10	10	9	9
MC statistics	5	2	5	2
Electron energy scale	4	6	—	3
Electron energy resolution	4	5	—	2
Muon energy scale	—	—	5	2
Higher-order corrections	3	1	3	2
Other sources	1	1	2	2
Stat.	9	7	9	5

- Agreement with PDG value at 0.6 σ
- D0 and CDF measurements also with a large PDF uncertainty.

[CDF PRD 89 (2014) 072003] [D0 arXiv:1408.5016]

Future precision limited by PDFs

Drell-Yan lepton pairs at 8 TeV

- Recent A_{FB} measurement at 8 TeV by CMS
 - ➔ Muon and electrons pairs
- As well as Z angular coefficients

- ➔ Muon pairs only
- \rightarrow A₄ sensitive to sin θ_w

Next step: $sin^2 \theta_{eff}^{lept}$

[[]CDF PRD 88 (2013) 072002]

Quark couplings

• DY Z events also sensitive to Z-q couplings

[D0 PRD 84 (2011) 012007] [H1 prelim-10-042 (2010)]

 \rightarrow Obtained by fixing Z-l couplings and sin² θ_{w}

🔌 Most precise measurements

 Neutral Current and Charge current in e-p interactions can also be exploited

NC, CC Interactions: Electroweak Unification

• A legacy textbook picture from HERA

🔌 Final HERA result

 At hight scales CC and NC become of similar magnitude

Triple Gauge Boson Self Couplings

First observed at LEP, Tevatron

Multiboson Cross Section Measurements

 \rightarrow Diboson final states: $\gamma\gamma$, $W\gamma$, $Z\gamma$, WW, WZ, ZZ

t-channel min W₂

In SM: only charged TGCs $(W\gamma, WW, WZ)$

CMS

	Mar. 2015		CMS	Preliminary
	CMS measurements	7 TeV CMS measurem	nent (stat,stat+sys) ⊢	· · · · · · · · · · · · · · · · · · ·
	vs. NLO (NNLO) theory	8 TeV CMS measurem	nent (stat,stat+sys) 🛛 🛏	· • · · · · · · · · · · · · · · · · · ·
	$\gamma\gamma$, (NNLO th.)	 1	$.06 \pm 0.01 \pm 0.12$	5.0 fb ⁻¹
	Wγ	<mark>⊢+ ↔ + → → 1</mark> .	.16 ± 0.03 ± 0.13	5.0 fb ⁻¹
	Zγ ⊢ <mark>⊷⊢</mark>	<mark>⊣</mark> 0.	.98 ± 0.01 ± 0.05	5.0 fb ⁻¹
	Zγ + <mark>•</mark> -	<mark>- 0</mark>	$.98 \pm 0.01 \pm 0.05$	19.5 fb ⁻¹
	WW+WZ ⊢⊢⊢	<mark>-</mark> ∽ 1,	$.05 \pm 0.13 \pm 0.15$	4.9 fb ⁻¹
	WW ,	<mark>- + • + - 1</mark> ,	.11±0.04±0.10	4.9 fb ⁻¹
	WW, (NNLO th.) ⊢ +•	<mark>' 1</mark> ,	$.01 \pm 0.02 \pm 0.08$	19.4 fb ⁻¹
	WZ	<u> ⊢⊢⊸∽−−⊢</u> 1,	.17 ± 0.07 ± 0.07	4.9 fb ⁻¹
	WZ	<mark>· ⊢ · • · - ·</mark> 1.	$.12 \pm 0.03 \pm 0.07$	19.6 fb ⁻¹
	ZZ +	— H 0	.99 ± 0.14 ± 0.07	4.9 fb ⁻¹
	ZZ	1	$.00 \pm 0.06 \pm 0.08$	19.6 fb ⁻¹
0.	⁵ All results at: ¹ http://cern.ch/go/pNj7	Production Cross	^{1.5} Section Ratio:	$\sigma_{\rm exp} / \sigma_{\rm theo}^2$

ATI AS

Status: March 2015

$\sigma^{\text{fid}}(\gamma\gamma)[\Delta R_{\gamma\gamma} > 0.4]$ = 44.0 + 3.2 - 4.2 pb (data) 2vNNLO (theory) 0 ATLAS Preliminary r = 2.77 ± 0.03 ± 0.36 pb (data) $\sigma^{\rm fid}(\mathsf{W}\gamma \to \ell v \gamma)$ 0 $\sqrt{s} = 7, 8 \text{ TeV}$ Run 1 $r = 1.76 \pm 0.03 \pm 0.22 \text{ pb} \text{ (data)}$ $-[n_{iet} = 0]$ = 1.31 ± 0.02 ± 0.12 pb (data $\sigma^{\rm fid}(\mathsf{Z}\gamma \to \ell \ell \gamma)$ ō $\tau = 1.05 \pm 0.02 \pm 0.11 \text{ pb} \text{ (data)}$ $-[n_{iet} = 0]$ $r = 6.1 + 1.1 - 1.0 \pm 1.2$ fb (data) MCFM NLO (theory) $\sigma^{\rm fid}(\mathsf{W}\gamma\gamma \to \ell \gamma\gamma\gamma)$ $-[n_{iet} = 0]$ = 2.9 + 0.8 - 0.7 + 1.0 - 0.9 fb (data) MCFM NLO (theory) r = 1.37 ± 0.14 ± 0.37 pb (data) MC@NLO (theory) $\sigma^{\text{fid}}(pp \rightarrow WV \rightarrow \ell \nu qq)$ $\sigma^{\rm fid}(W^{\pm}W^{\pm}ii)$ EWK = 51.9 ± 2.0 ± 4.4 pb (data) MCFM (theory) = 71.4 ± 1.2 + 5.5 - 4.9 pb (data) MCFM (theory) $\sigma^{\text{total}}(pp \rightarrow WW)$ $-\sigma^{\text{fid}}(WW \rightarrow ee) [n_{\text{iet}}=0]$ 56.4 ± 6.8 ± 10.0 fb (data) MCFM (theory) 3.9 ± 5.9 ± 7.5 fb (data) MCFM (theory) $-\sigma^{\text{fid}}(WW \rightarrow \mu\mu) [n_{\text{iet}}=0]$ LHC pp $\sqrt{s} = 7$ TeV $-\sigma^{\text{fid}}(WW \rightarrow e\mu) [n_{\text{jet}}=0]$ 262.3 ± 12.3 ± 23.1 fb (data) 0 Theory $-\sigma^{\text{fid}}(WW \rightarrow e\mu) [n_{\text{jet}} \ge 0]$ 563.0 ± 28.0 + 79.0 - 85.0 fb (data Observed + 1.4 - 1.3 ± 1.0 pb (data) stat stat+syst $\sigma^{\text{total}}(pp \rightarrow WZ)$ HM (theory) 8 - 0.7 + 1.4 - 1.3 pb (data) $-\sigma^{\text{fid}}(WZ \rightarrow \ell \nu \ell \ell)$ 99.2 + 3.8 - 3.0 + 6.0 - 6.2 fb (data) MCFM (theory) LHC pp $\sqrt{s} = 8 \text{ TeV}$ 0.7 + 0.5 - 0.4 pb (dat $\sigma^{\text{total}}(pp \rightarrow ZZ)$ (1100ry)4 + 0.4 pb (dat Theory

 $-\sigma^{\text{fid}}(\mathsf{ZZ} \rightarrow 4\ell)$

$WW \rightarrow 21 \ 2v$

• Large statistics with LHC 8 TeV data

➔ Precise differential measurements

Total cross section: CMS: $\sigma_{tot.} = 60.1 \pm 0.9 \text{ (stat.)} \pm 3.2 \text{ (exp.)}$ $\pm 3.1 \text{ (th.)} \pm 1.6 \text{ (lumi.)} \text{ pb}$ ATLAS: (H \rightarrow WW* included)

$$\sigma_{tot.} = 71.4 \pm 1.2 \,({
m stat.})^{+5.0}_{-4.4} \,({
m sys.})^{+2.2}_{-2.1} ({
m lumi.}) \,\,{
m pb}$$

[ATLAS-CONF-2014-033]

Predicted:

$$\sigma^{NNLO}_{th.} = 59.8 \pm 2.1 ext{ pb}$$

 $\sigma^{H
ightarrow WW*}_{th.} = 4.1 \pm 7.5 ext{ pb}$

- ➔ Agreement with NNLO prediction
- Theory uncertainties affects the measurement
- A fair assessment of theory uncertainties is needed to compare to data

WW: theory limitations

 Large NNLO QCD corrections (9-12%)

- NLO EW corrections also important
 - → Calculations for WW including leptons decays [arXiv:1310.1564]

- 0-jet veto used to reduce tt background
 - Enhance sensitivity to QCD corrections [PRD 90 (2014) 073009] [arXiv:1410.4745]
- \rightarrow Jet multiplicity and p_{τ}^{WW} --- Powheg Pythia8 modeling linked — Powheg Herwig++ 0.025 ---- aMC@NLO Herwig++ --- MG5 Pythia6 0.020 — Resummed e C 0.015 Scale Variation L 0.010 >=1 jets $d\sigma$ 0 jets 0.005 [PRD 90 (2014) 114006] 0.000 5 10 15 20 25 30 0 $p_T(WW)[GeV]$
 - Better compare fiducial than total cross sections

WW: jet multiplicity measurement

[CDF, arXiv:1505.00801]

- At the Tevatron, using the full Run II data set
 - \rightarrow b-jet tag and neural network used to reduce tt background

Charged Anomalous Triple Gauge Couplings

Low energy effects from high scale New Physics

• General Lagrangian for WWV conserving C and P

• For SM:
$$g_1^{\gamma} = g_1^Z = \kappa_{\gamma} = \kappa_Z = 1$$

$$\lambda_{\gamma} = \lambda_Z = 0$$

• W magnetic moment:

$$\mu_W = \frac{e}{2m_W} (1 + \kappa_\gamma + \lambda_\gamma)$$

• W electric quadrupole moment:

$$Q_W = -\frac{e}{m_W^2} (\kappa_\gamma - \lambda_\gamma)$$

• Charged aTGCs WWZ

			ATLAS Limits CMS Prel. Limits D0 Limit LEP Limit
Δr	⊢	WW	-0.043 - 0.043 4.6 fb
ΔĸZ	⊢−−−−	WV	-0.090 - 0.105 4.6 fb
	⊢	WV	-0.043 - 0.033 5.0 fb
	⊢●1	LEP Combination	-0.074 - 0.051 0.7 fb
λ	⊢	WW	-0.062 - 0.059 4.6 fb
ΛZ	⊢−−− 1	WW	-0.048 - 0.048 4.9 fb
	⊢ – I	WZ	-0.046 - 0.047 4.6 fb
	\vdash	WV	-0.039 - 0.040 4.6 fb
	⊢ I	WV	-0.038 - 0.030 5.0 fb
	HoH	D0 Combination	-0.036 - 0.044 8.6 fb
	⊢●⊣	LEP Combination	-0.059 - 0.017 0.7 fb
۸dZ	\vdash	WW	-0.039 - 0.052 4.6 fb
∆9 ₁	⊢−−−−− I	WW	-0.095 - 0.095 4.9 fb
	⊢−−−−	WZ	-0.057 - 0.093 4.6 fb
	⊢ −−1	WV	-0.055 - 0.071 4.6 fb
	$\vdash \circ \dashv$	D0 Combination	-0.034 - 0.084 8.6 fb
	⊢ ●-	LEP Combination	-0.054 - 0.021 0.7 fb
0.5		0.5 1	15
-0.5	0	aTGC L	.imits @ٰ9̃5% C.

Only using 7 TeV data, LHC limits are now as stringent as LEP or Tevatron ones

Neutral aTGCs

• Forbidden in the SM when all particles are on shell

→ ZZZ, ZγZ

Mar 2015			
			ATLAS Limits CMS Prel. Limits
ĘŶ	⊢ I	ZZ	-0.015 - 0.015 4.6 fb ⁻¹
4	⊢	ZZ	-0.005 - 0.005 19.6 fb ⁻¹
	H	ZZ (2l2v)	-0.004 - 0.003 24.7 fb ⁻¹
	н	ZZ (comb)	-0.003 - 0.003 24.7 fb ⁻¹
۶Z	H	ZZ	-0.013 - 0.013 4.6 fb ⁻¹
4	⊢	ZZ	-0.004 - 0.004 19.6 fb ⁻¹
	н	ZZ (2l2v)	-0.003 - 0.003 24.7 fb ⁻¹
	H	ZZ (comb)	-0.002 - 0.003 24.7 fb ⁻¹
۴Ŷ	⊢−−−− 1	ZZ	-0.016 - 0.015 4.6 fb ⁻¹
5	⊢	ZZ	-0.005 - 0.005 19.6 fb ⁻¹
	\mapsto	ZZ(2l2v)	-0.003 - 0.004 24.7 fb ⁻¹
	H	ZZ(comb)	-0.003 - 0.003 24.7 fb ⁻¹
£ Z	H	ZZ	-0.013 - 0.013 4.6 fb ⁻¹
5	⊢	ZZ	-0.004 - 0.004 19.6 fb ⁻¹
	щ	ZZ (2l2v)	-0.003 - 0.003 24.7 fb ⁻¹
	н	ZZ (comb)	-0.002 - 0.002 24.7 fb ⁻¹
-0.5	0	0.5	1 1.5 $x10^{-1}$
		aTGC	C Limits @95% C.L.

→ ΖΖγ, Ζγγ

Feb 2015			
			ATLAS Limits HI CMS Prel. Limits HI CDF Limit HI
μ ^γ	⊢−−−−− 1	Ζγ	-0.015 - 0.016 4.6 fb ⁻¹
п ₃	щ	Zγ	-0.003 - 0.003 5.0 fb ⁻¹
	—	Zγ	-0.005 - 0.005 19.5 fb ⁻¹
	⊢	Zγ	-0.022 - 0.020 5.1 fb ⁻¹
hZ	⊢−−−− I	Zγ	-0.013 - 0.014 4.6 fb ⁻¹
11 ₃	H	Zγ	-0.003 - 0.003 5.0 fb ⁻¹
	⊢ I	Zγ	-0.004 - 0.004 19.5 fb ⁻¹
	H	Zγ	-0.020 - 0.021 5.1 fb ⁻¹
$h^{\gamma} \times 100$	⊢−−−−	Zγ	-0.009 - 0.009 4.6 fb ⁻¹
11 ₄ ×100	н	Zγ	-0.001 - 0.001 5.0 fb ⁻¹
	⊢ I	Zγ	-0.004 - 0.004 19.5 fb ⁻¹
$h^{Z} \times 100$	⊢−−−− 1	Zγ	-0.009 - 0.009 4.6 fb ⁻¹
11 ₄ ×100	н	Zγ	-0.001 - 0.001 5.0 fb ⁻¹
	<u> </u>	Ζγ	-0.003 - 0.003 19.5 fb ⁻¹
		0.5	
-0.5	U	0.0 A	TGC Limits $@95\%$ CL
		u	

LHC limits now dominate

Quartic Gauge Boson Self Couplings

- 3 bosons productions
- $\gamma\gamma$ exclusive production $\gamma\gamma \rightarrow WW$
- Vector Boson Scattering

🔌 First evidences with 8 TeV LHC data

• Vector Boson Scattering

Direct probe of the nature of the EWSB mechanism

Wyy production

[ATLAS, arXiv:1503.03243]

➔ Inclusive and exclusive cross sections

ΓN	1 01
1.1.4	_ _j

	$\sigma^{\rm fid}$ [fb]	σ ^{MCFM} [fb]
Inclusive $(N_{jet} \ge 0)$		
μνγγ	7.1 $^{+1.3}_{-1.2}$ (stat.) ± 1.5 (syst.) ± 0.2 (lumi.)	Incl.
$ev\gamma\gamma$	4.3 + 1.8 = 1.6 (stat.) +1.9 (syst.) ±0.2 (lumi.)	2.90 ± 0.16
$\ell \nu \gamma \gamma$	6.1 $^{+1.1}_{-1.0}$ (stat.) ± 1.2 (syst.) ± 0.2 (lumi.)	
Exclusive $(N_{jet} = 0)$		
μνγγ	3.5 ± 0.9 (stat.) $^{+1.1}_{-1.0}$ (syst.) ± 0.1 (lumi.)	Excl.
evγγ	$1.9 + 1.4_{-1.1}$ (stat.) $+ 1.1_{-1.2}$ (syst.) ± 0.1 (lumi.)	1.88 ± 0.20
$\ell \nu \gamma \gamma$	$2.9 + 0.8 - 0.7$ (stat.) $+ 1.0 - 0.9$ (syst.) ± 0.1 (lumi.)	

- As for Wγ, NNLO QCD corrections are important
 - → 19 26% for Wγ [arXiv:1504.01330]

E. Sauvan – LAPP Annecy

Anomalous Quartic Gauge Couplings

• 3 bosons final state or VBS used to set limits on dim. 8 EFT operators: $f_{T,0}$, $f_{M,i}$, α_4 , α_5 ($\leftrightarrow f_{s,0}$, $f_{s,1}$)

($a_{W0,C}$ = parametrised $f_{M,2,3}$ to match LEP and CMS conventions)

Parameters

- m_w and sin θ_w : W and Z precision measurements
 - → Improved PDF constraints are critical

Interactions

- Triple Gauge couplings: towards precision measurements
 - → Experimental precision match theory one
 - → NNLO QCD + NLO EW Monte Carlo desirable
- Quartic Gauge couplings: the observations started
 - The movement will be amplified with 13 TeV data (~ x3 larger cross sections)
 - Next Challenges in EW physics at colliders are in PDFs, QCD and theory

[Apologizes for subjects or results not shown]