June 3, 2015 http://blois.in2p3.fr/2015

Tae Min Hong

U Pittsburgh

Outline

- ATLAS / CMS, LHC
- Higgs yield...... N
- Sig. strength...... $\mu = N_{obs} / N_{exp}$
- Coupling...... $\mu^{\downarrow} = \prod_{i} \kappa_{i}^{2} / \kappa_{H}^{2}$
 - New physics in vertices?
 - New physics in loops?
 - Fermion v. Boson?
 - Decay invisibly?
- Summary
- Backup
 - References [1, 2] & model list

ATLAS & CMS detectors

Hong

LHC is a Higgs factory

Produce 0.5M Higgs per exp't \rightarrow 10 - 20% measurements

Higgs yields Yields below for rough idea. Categories / bins important.

Hong

ΡП

Signal strength

$$\mu = \frac{N_{\text{observed Higgs}}}{N_{\text{expected Higgs}}}$$

Combined result

Each decay & production
 Consistent within errors

VBF-ggF consistent within 1 σ . Most stringent input from *WW*.

General relations for $\mu \leftrightarrow \kappa$

Diagrams

Formulae

- Fit all \mathcal{K} simultaneously (assume fixed Γ_H)
- Better constraints with addt'l assumptions

Benchmark models

Table for reference; will discuss a few models next

Couplings	Doromotors		Function	al assur	nptions	Example: up in agE	
Couplings	1 af afficiers	κ_V	К _Г	к _g	κγ	κ _H	Example. <i>yy</i> in ggr
Fermions / Bosons	κ_V, κ_F	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\kappa_F^2 \cdot \kappa_\gamma^2(\kappa_F,\kappa_V)/\kappa_{ m H}^2(\kappa_F,\kappa_V)$
	$λ_{FV}$, κ _{VV}	\checkmark	\checkmark	\checkmark	\checkmark	_	$] \kappa_{VV}^2 \cdot \lambda_{FV}^2 \cdot \kappa_{\gamma}^2(\lambda_{FV}, \lambda_{FV}, \lambda_{FV}, 1) $
Loops + BR _{BSM}	$\kappa_{g}, \kappa_{\gamma}, \kappa_{Z\gamma}$	=1	=1		_	\checkmark	$\kappa_g^2\cdot\kappa_\gamma^2/\kappa_H^2(\kappa_g,\kappa_\gamma)$
	$\kappa_{g}, \kappa_{\gamma}, \\ \kappa_{Z\gamma}, BR_{i.,u.}$	=1	=1	_	-	\checkmark	$\kappa_g^2 \cdot \kappa_\gamma^2 / \kappa_H^2(\kappa_g, \kappa_\gamma) \cdot (1 - BR_{i.,u.})$
	$\kappa_F, \kappa_V, BR_{i.,u.}$	≤ 1 _		\checkmark	√ √	\checkmark $\mu_{ m off}$	$\frac{\kappa_F^2 \cdot \kappa_{\gamma}(\kappa_F, \kappa_V)^2}{\kappa_H^2(\kappa_F, \kappa_V)} \cdot (1 - BR_{i.,u.})$
U/D-type fermions	$\kappa_F, \kappa_V, \kappa_g, \kappa_\gamma,$	≤ 1	-	—	-	\checkmark	$\frac{\kappa_F^2 \cdot \kappa_{\gamma}(\kappa_F, \kappa_V)^2}{(1 - BR; \dots)}$
	$\kappa_{Z\gamma}, BR_{i.,u.}$	_	_	_	_	$\mu_{ m off}$	$\kappa_{\rm H}^2(\kappa_F,\kappa_V,\kappa_g,\kappa_\gamma)$ (1 Divi.,u.)
	$λ_{du}, λ_{Vu}, κ_{uu}$	\checkmark	κ_u, κ_d	\checkmark	\checkmark	_	$\kappa_{uu}^2 \cdot \kappa_{g}^2(\lambda_{du}, 1) \cdot \kappa_{\gamma}^2(\lambda_{du}, 1, \lambda_{du}, \lambda_{Vu})$
Leptons / Quarks	$\lambda_{lq},\lambda_{Vq},\kappa_{qq}$	\checkmark	κ_l, κ_q	\checkmark	\checkmark	_	$\kappa_{qq}^2 \cdot \kappa_{\gamma}^2(1, 1, \lambda_{lq}, \lambda_{Vq})$
	$\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_\tau, \kappa_\mu$	_	_	\checkmark	\checkmark	\checkmark	$\frac{\kappa_{g}^{2}(\kappa_{b},\kappa_{t})\cdot\kappa_{\gamma}^{2}(\kappa_{b},\kappa_{t},\kappa_{\tau},\kappa_{\mu},\kappa_{W})}{\kappa_{H}^{2}(\kappa_{b},\kappa_{t},\kappa_{\tau},\kappa_{\mu},\kappa_{W},\kappa_{Z})}$
Generic models	$\kappa_{\mathrm{W}}, \kappa_{\mathrm{Z}}, \kappa_{\mathrm{t}}, \kappa_{\mathrm{b}},$	≤ 1	-	—	-	\checkmark	$\kappa^2 \cdot \kappa^2$
	$\kappa_{\tau}, \kappa_{\mu}, \kappa_{g}, \kappa_{\gamma},$	—	-	—	-	\checkmark	$\frac{\kappa_g \kappa_{\gamma}}{\kappa_r^2 (\kappa_b \kappa_t \kappa_r \kappa_w \kappa_{\gamma})} \cdot (1 - BR_{i.,u.})$
	$\kappa_{Z\gamma}, BR_{i.,u.}$	_	-	_	_	$\mu_{ m off}$	
	$\begin{array}{l} \lambda_{WZ}, \lambda_{tg}, \lambda_{bZ}, \lambda_{\tau Z}, \\ \lambda_{gZ}, \lambda_{\gamma Z}, \lambda_{Z\gamma Z}, \kappa_{gZ} \end{array}$	_	_	_	_	_	$\kappa_{gZ}^2\cdot\lambda_{\gamma Z}^2$
Higgs \rightarrow invisible	BRiny		d	irect			

I added the last row to the list, not part of couplings papers.

Higgs couplings

10

Higgs gives mass? Check vertices (assume SM loops)

m or m^2 dependence in the Lagrangian consistent within ~1 σ .

Higgs couplings

Hong PITT

New physics in loops? Check loops.

• SM for every *K* included in 95% confidence interval

2-d compatibility test consistent at **41%**

$VBF H \rightarrow WW^* \rightarrow ev\mu v$

THEFT

electron

jet

Run 214680, Ev. no. 271333760 Nov. 17, 2012, 07:42:05 CET

Hong

PITI

jet

No statistically significant deviations w.r.t. SM.

Higgs couplings

Higgs decays invisibly (SUSY, DM, etc.)?

- Combined coupling limit on $BR_{BSM} = BR_{undetected} + BR_{invisible}$
- $H \rightarrow E_T^{miss}$ limit on **BR**_{invisible}, most stringent from VBF, then VH
 - $\begin{array}{rcrcr} BR_{CMS} &< 57\% & 40\% \\ BR_{ATLAS} &< 29\% & 35\% \\ & & obs. & exp. & at 95\% \, CL \end{array}$
- Limits from indirect (couplings), direct (E_T^{miss})

Summary

- Fermions v. Bosons?
 - Good to 10 20%
- Vertices, loops?
 - Good to 10 20%
- BSM decay?
 - **BR**_{invisible} \lesssim 40%
- Corner Higgs with more data & better techniques

Higgs is weird! Check if portal to non-SM physics.

Bibliography

[1] All of the Higgs information is from

- https://cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults
- <u>http://cms.web.cern.ch/org/cms-higgs-results</u>
 I most heavily relied on the two couplings CONF notes.

[2] The cartoon from p1 and p17 is by Roz Chast from

http://www.symmetrymagazine.org/sites/default/files/images/hires/cover_cropped.jpg

Summary table from CMS

Table 12: Tests of the compatibility of the data with the SM Higgs boson couplings. The best-fit values and 68% and 95% CL confidence intervals are given for the evaluated scaling factors κ_i or ratios $\lambda_{ij} = \kappa_i / \kappa_j$. The different compatibility tests discussed in the text are separated by horizontal lines. When one of the parameters in a group is evaluated, others are treated as nuisance parameters.

Madal a succession	Table in	Demonstern	Best-	fit result	Comment
Model parameters	Ref. [169]	Parameter	68% CL	95% CL	
κ_Z , λ_{WZ} (κ_f =1)	—	λ_{WZ}	$0.94\substack{+0.22\\-0.18}$	[0.61, 1.45]	$\lambda_{WZ} = \kappa_W / \kappa_Z$ from ZZ and 0/1-jet WW channels.
$\kappa_Z, \lambda_{WZ}, \kappa_f$	44 (top)	λ_{WZ}	$0.92\substack{+0.14 \\ -0.12}$	[0.71, 1.24]	$\lambda_{WZ} = \kappa_W / \kappa_Z$ from full combination.
<i>κ</i> _V , <i>κ</i> _f	43 (top)	$\kappa_{\rm V}$	$1.01\substack{+0.07 \\ -0.07}$	[0.87, 1.14]	$\kappa_{\rm V}$ scales couplings to W and Z bosons.
	(10)	κ_{f}	$0.87\substack{+0.14 \\ -0.13}$	[0.63, 1.15]	$\kappa_{\rm f}$ scales couplings to all fermions.
$\kappa_{\mathrm{V}}, \lambda_{\mathrm{du}}, \kappa_{\mathrm{u}}$	46 (top)	λ_{du}	$0.99\substack{+0.19\\-0.18}$	[0.65, 1.39]	$\lambda_{du} = \kappa_u / \kappa_d$, relates up-type and down-type fermions.
$\kappa_{ m V}, \lambda_{\ell m q}, \kappa_{ m q}$	47 (top)	$\lambda_{\ell q}$	$1.03\substack{+0.23 \\ -0.21}$	[0.62, 1.50]	$\lambda_{\ell q} = \kappa_{\ell} / \kappa_{q}$, relates leptons and quarks.
		κ_{W}	$0.95 \ ^{+0.14}_{-0.13}$	[0.68, 1.23]	
		$\kappa_{\rm Z}$	$1.05 \ ^{+0.16}_{-0.16}$	[0.72, 1.35]	
<i>κ</i> _W , <i>κ</i> _Z , <i>κ</i> _t ,	Extends	$\kappa_{\rm t}$	$0.81 \ ^{+0.19}_{-0.15}$	[0.53, 1.20]	Up-type quarks (via t).
$\kappa_{\rm b}, \kappa_{\tau}, \kappa_{\mu}$	51	$\kappa_{\rm b}$	$0.74 \ ^{+0.33}_{-0.29}$	[0.09, 1.44]	Down-type quarks (via b).
		$\kappa_{ au}$	$0.84 \ ^{+0.19}_{-0.18}$	[0.50, 1.24]	Electron and tau lepton (via τ).
		κ_{μ}	$0.49 \ ^{+1.38}_{-0.49}$	[0.00, 2.77]	κ_{μ} scales the coupling to muons.
Мс	Ref. [202]	M (GeV)	245 ± 15	[217, 279]	$\kappa_{\rm f} = v \frac{m_{\rm f}^{\epsilon}}{M^{1+\epsilon}}$ and $\kappa_{\rm V} = v \frac{m_{\rm V}^{2\epsilon}}{M^{1+2\epsilon}}$
1v1, c		ϵ	$0.014\substack{+0.041\\-0.036}$	[-0.054, 0.100]	(Section 7.4)
<i>V V</i>	48	κ _g	$0.89\substack{+0.11 \\ -0.10}$	[0.69, 1.11]	Effective couplings to
κ g, κ γ	(top)	κ_γ	$1.14\substack{+0.12\\-0.13}$	[0.89, 1.40]	gluons (g) and photons (γ).
$\kappa_{\rm g}, \kappa_{\gamma}, {\rm BR}_{\rm BSM}$	48 (middle)	BR _{BSM}	≤ 0.14	[0.00, 0.32]	Allows for BSM decays.
with $H(inv)$ searches	_	BR _{inv}	$0.03 \ ^{+0.15}_{-0.03}$	[0.00, 0.32]	$H(inv)$ use implies $BR_{undet} = 0$.
with H(inv) and $\kappa_i = 1$	_	BR _{inv}	$0.06 \stackrel{+0.11}{_{-0.06}}$	[0.00, 0.27]	Assumes $\kappa_i = 1$ and uses H(inv)
		κ _{gZ}	$0.98 \substack{+0.14 \\ -0.13}$	[0.73, 1.27]	$\kappa_{gZ} = \kappa_g \kappa_Z / \kappa_H$, i.e. floating κ_H .
κ _{gZ} ,		λ_{WZ}	$0.87 \substack{+0.15 \\ -0.13}$	[0.63, 1.19]	$\lambda_{WZ} = \kappa_W / \kappa_Z.$
, , , , , , , , , , , , , , , , , , ,		λ_{Zg}	$1.39 \substack{+0.36 \\ -0.28}$	[0.87, 2.18]	$\lambda_{Zg} = \kappa_Z / \kappa_g.$
$\lambda_{WZ}, \lambda_{Zg}, \lambda_{bZ},$	50 (bottom)	λ_{bZ}	$0.59 \substack{+0.22 \\ -0.23}$	≤ 1.07	$\lambda_{\rm bZ} = \kappa_{\rm b} / \kappa_{\rm Z}.$
	(bottom)	$\lambda_{\gamma Z}$	$0.93 \ ^{+0.17}_{-0.14}$	[0.67, 1.31]	$\lambda_{\gamma Z} = \kappa_{\gamma} / \kappa_{Z}.$
$\lambda_{\gamma Z}, \lambda_{\tau Z}, \lambda_{tg}$		$\lambda_{\tau Z}$	$0.79 \ ^{+0.19}_{-0.17}$	[0.47, 1.20]	$\lambda_{\tau Z} = \kappa_{\tau} / \kappa_{Z}.$
		λ_{tg}	$2.18 \ ^{+0.54}_{-0.46}$	[1.30, 3.35]	$\lambda_{\mathrm{tg}} = \kappa_{\mathrm{t}} / \kappa_{\mathrm{g}}.$
		κ _V	$0.96^{+0.14}_{-0.15}$	[0.66, 1.23]	
		κ _b	$0.64_{-0.29}^{+0.28}$	[0.00, 1.23]	Down-type quarks (via b).
$\kappa_{\rm V}, \kappa_{\rm b}, \kappa_{\tau},$	Similar to	$\kappa_{ au}$	$0.82\substack{+0.18\\-0.18}$	[0.48, 1.20]	Charged leptons (via τ).
	50 (top)	$\kappa_{\rm t}$	$1.60^{+0.34}_{-0.32}$	[0.97, 2.28]	Up-type quarks (via t).
$\kappa_t, \kappa_g, \kappa_\gamma$		Кg	$0.75\substack{+0.15\\-0.13}$	[0.52, 1.07]	
		κ_{γ}	$0.98\substack{+0.17 \\ -0.16}$	[0.67, 1.33]	
with $\kappa_{\rm V} \leq 1$ and ${\rm BR}_{\rm BSM}$		BR _{BSM}	≤ 0.34	[0.00, 0.57]	Allows for BSM decays.
with $\kappa_{\rm V} \leq 1$ and ${\rm H}({\rm inv})$		BR _{inv}	0.17 ± 0.17	[0.00, 0.49]	$H(inv) \text{ use implies } BR_{undet} = 0.$
with $\kappa_{\rm V} \leq 1$, H(inv),		BR _{inv}	0.17 ± 0.17	[0.00, 0.49]	Separates BRinv from BRundet,
BRiny, and BRundet	_	BRundet	< 0.23	[0.00, 0.52]	$BR_{BSM} = BR_{inv} + BR_{undet}$.