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Figure 19: Results of fits for the generic model 2 (see text): the results indicated by a full box are obtained for
a benchmark model with e↵ective coupling strengths for loop processes allowing non-SM contributions, and a
floating BRi. ,u. allowing non-SM contributions to the total decay width. The fit results indicated by a full circle
represent a benchmark model where the total Higgs boson decay width is not modified with respect to the SM.
The hatched area indicates regions that are outside the defined parameter boundaries. The inner and outer bars
correspond to 68% CL and 95% CL intervals. The confidence intervals of BRi. ,u. and, in the benchmark model
with the constraints kW < 1 and |kZ | < 1, also kW and kZ , are estimated with respect to their physical boundaries
as described in the text. Numerical results are shown in Table 8.
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SM particles, one coupling at a time while profiling the remaining five together with all other
nuisance parameters; from top to bottom: kV (W and Z bosons), kb (bottom quarks), kt (tau
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Figure 17: Likelihood scans for parameters in a model without assumptions on the total width
and with six coupling modifier ratios, one parameter at a time while profiling the remaining
six together with all other nuisance parameters; from top to bottom: kgZ (= kgkZ/kH), lWZ
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The inner bars represent the 68% CL confidence intervals while the outer bars represent the
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Run 2 (and beyond): High Precision Higgs era.
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a benchmark model with e↵ective coupling strengths for loop processes allowing non-SM contributions, and a
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with the constraints kW < 1 and |kZ | < 1, also kW and kZ , are estimated with respect to their physical boundaries
as described in the text. Numerical results are shown in Table 8.
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How to collect all available information on this state,
in the most general and theoretically unbiased way?

LHC Legacy

Run 2 (and beyond): High Precision Higgs era.
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PO encode experimental information in idealized observables, of easy theoretical 
interpretation. This approach is old: developed at LEP to describe the Z properties.
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PO can then be matched, by theorists, to any explicit scenario — SM EFT, SUSY, 
Composite Higgs, etc.. — at the desired order in perturbation theory.
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LEP-1 Strategy: on-shell Z decays

The goal was to parametrise on-shell Z decays as much model-independently as possible,
in a way which would decouple infrared radiation (QED & QCD) effects.

[Bardin, Grunewald, Passarino ’99]

3 Pseudo-Observables

There remains to be investigated the systematic errors arising from theory and
possible ambiguities in the definition of the MI fit parameters, the POs.

3.1 Definition of Pseudo-Observables

Independent of the particular realization of the effective couplings they are
complex-valued functions, due to the imaginary parts of the diagrams. In the
past this fact had some relevance only for realistic observables while for pseudo-
observables they were conventionally defined to include only real parts. This
convention has changed lately with the introduction of next-to-leading correc-
tions: imaginary parts, although not next-to-leading in a strict sense, are size-
able two-loop effects. These are enhanced by factors π2 and sometimes also
by a factor Nf , with Nf being the total number of fermions (flavour⊗ colour)
in the SM. Once we include the best of the two-loop terms then imaginary
parts should also come in. The latest versions of TOPAZ0 and ZFITTER therefore
include imaginary parts of the Z-resonance form factors.

The explicit formulae for the Zff vertex are always written starting from a
Born-like form of a pre-factor × fermionic current, where the Born parameters
are promoted to effective, scale-dependent parameters,

ρf
Z
γµ

[(

I(3)
f + i aL

)

γ+ − 2 Qfκf
Z
s2 + i aQ

]

= γµ

(

Gf
V

+ Gf
A

γ5

)

, (6)

where γ+ = 1 + γ5 and aQ,L are the SM imaginary parts. Note that imaginary
parts are always factorized in ZFITTER and added linearly in TOPAZ0.

By definition, the total and partial widths of the Z boson include all cor-
rections, also QED and QCD corrections. The partial decay width is therefore
described by the following expression:

Γf ≡ Γ
(

Z → ff
)

= 4 cf Γ0

(

|Gf
V
|2 Rf

V + |Gf
A
|2 Rf

A

)

+ ∆
EW/QCD

, (7)

where cf = 1 or 3 for leptons or quarks (f = l, q), and the radiator factors

Rf
V and Rf

A describe the final state QED and QCD corrections and take into
account the fermion mass mf .

There is a large body of contributions to the radiator factors in particular for
the decay Z → qq; both TOPAZ0 and ZFITTER implement the results that have
been either derived or, in few cases, confirmed in some more general setting by
the Karlsruhe group, see for instance [15]. The splitting between radiators and
effective couplings follows well defined recipes that can be found and referred to
in [4, 16]. In particular our choice has been that top-mass dependent QCD cor-
rections are to be considered as QCD corrections and included in the radiators
and not in the effective quark couplings.

The last term,

∆
EW/QCD

= Γ(2)
EW/QCD

−
αS

π
Γ(1)

EW
, (8)
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Radiators: final state radiation

non-factorizable SM corrections,
very small.

The PO are defined as

accounts for the non-factorizable corrections. The standard partial width, Γ0,
is

Γ0 =
GF M3

Z

24
√

2 π
= 82.945(7) MeV. (9)

The hadronic and leptonic pole cross-sections are defined by

σ0
h = 12π

ΓeΓh

M2
Z
Γ2

Z

σ0
ℓ = 12π

ΓeΓl

M2
Z
Γ2

Z

, (10)

where ΓZ is the total decay width of the Z boson, i.e, the sum of all partial
decay widths. Note that the mass and total width of the Z boson are defined
based on a propagator term χ with an s-dependent width:

χ−1(s) = s − M2
Z

+ isΓZ /MZ . (11)

The effective electroweak mixing angles (effective sinuses) are always defined by

4 |Qf | sin2 θf
eff = 1 −

Re Gf
V

Re Gf
A

= 1 −
gf

V

gf
A

, (12)

where we define
gf

V
= Re Gf

V
, gf

A
= Re Gf

A
. (13)

The forward-backward asymmetry A
FB

is defined via

A
FB

=
σ

F
− σ

B

σ
F

+ σ
B

, σ
T

= σ
F

+ σ
B

, (14)

where σ
F

and σ
B

are the cross sections for forward and backward scattering,
respectively. Before analysing the forward-backward asymmetries we have to
describe the inclusion of imaginary parts. A

FB
is calculated as

A
FB

=
3

4

σ
VA

σ
T

, (15)

where

σ
VA

=
GF M2

Z√
2

√
ρeρf QeQfRe

[

α∗(M2
Z
)Ge

V
Gf

A
χ(s)

]

+
G2

F M4
Z

8 π
ρeρfRe

[

Ge
V

(

Ge
A

)∗
]

Re
[

Gf
V

(

Gf
A

)∗
]

s |χ(s)|2. (16)

In case of quark-pair production, an additional radiator factor multiplies σ
VA

,
see also Eq.(53).

This result is valid in the realization where ρf is a real quantity, i.e., the
imaginary parts are not re-summed in ρf . In this case

Gf
V

= Re
(

Gf
V

)

+ i Im
(

Gf
V

)

= gf
V

+ i Im
(

Gf
V

)

, Gf
A

= I(3)
f + i Im

(

Gf
A

)

. (17)
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To be model-independent it is important to work with on-shell initial and final states.

M. González-Alonso /10EFT analyses of  NP

Pseudo-observables in Higgs decays (linear EFT)

Exampl
e:

What’s the room for NP in 
Higgs decays taking into 

account LEP results?

Z

[MGA, Greljo, Isidori & Marzocca, arXiv:1504.xxxx]
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be extracted from data
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the total rate (κ) is all that can 
be extracted from data

2.2 Pseudo-observables in h ! ff̄ decays

In analogy to the e↵ective couplings of Z and W bosons to fermions, for each fermion
species we can introduce two real e↵ective couplings (yfS,P ) defined by

A(h ! ff̄) = � ip
2

h
(yfS + iyfP )f̄LfR + (yfS � iyfP )f̄RfL

i
. (5)

The “dressing” of this amplitude with soft QED and QCD radiation is straightforward.
The measurement of �(h ! ff̄) determines the combination |yfS|2+ |yfP |2, while the yfP/yfS
ratio can be determined only if the lepton polarization is experimentally accessible. If CP
is conserved only one of the two e↵ective couplings is allowed: if h is a CP-even state,
then only yfS is allowed.

Within the SM, at the tree-level, one finds

yf,SMS =

p
2mf

vF
, yf,SMP = 0 , (6)

where vF = (
p
2GF )�1/2, and GF is the Fermi constant extracted from the muon decay.

The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
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where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.
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LHC and on-shell Higgs decays: extending the κ-framework

The kinematics is much richer: 
kinematical distributions.

2.2 Pseudo-observables in h ! ff̄ decays

In analogy to the e↵ective couplings of Z and W bosons to fermions, for each fermion
species we can introduce two real e↵ective couplings (yfS,P ) defined by
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The “dressing” of this amplitude with soft QED and QCD radiation is straightforward.
The measurement of �(h ! ff̄) determines the combination |yfS|2+ |yfP |2, while the yfP/yfS
ratio can be determined only if the lepton polarization is experimentally accessible. If CP
is conserved only one of the two e↵ective couplings is allowed: if h is a CP-even state,
then only yfS is allowed.

Within the SM, at the tree-level, one finds

yf,SMS =

p
2mf

vF
, yf,SMP = 0 , (6)

where vF = (
p
2GF )�1/2, and GF is the Fermi constant extracted from the muon decay.

The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.
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2.2 Pseudo-observables in h ! ff̄ decays

In analogy to the e↵ective couplings of Z and W bosons to fermions, for each fermion
species we can introduce two real e↵ective couplings (yfS,P ) defined by

A(h ! ff̄) = � ip
2

h
(yfS + iyfP )f̄LfR + (yfS � iyfP )f̄RfL

i
. (5)

The “dressing” of this amplitude with soft QED and QCD radiation is straightforward.
The measurement of �(h ! ff̄) determines the combination |yfS|2+ |yfP |2, while the yfP/yfS
ratio can be determined only if the lepton polarization is experimentally accessible. If CP
is conserved only one of the two e↵ective couplings is allowed: if h is a CP-even state,
then only yfS is allowed.

Within the SM, at the tree-level, one finds

yf,SMS =

p
2mf

vF
, yf,SMP = 0 , (6)

where vF = (
p
2GF )�1/2, and GF is the Fermi constant extracted from the muon decay.

The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.
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The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.
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corresponding to operators with d > 6:
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To eq.(8) I added a (flavour universal) local interaction
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See that the interference of the ZZ term with the local interaction, as well as the quadratic
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I think the only way to consistently neglect those is to assume an EFT power counting,
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To eq.(8) I added a (flavour universal) local interaction
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See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,
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Radiative Corrections
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The most important radiative corrections are 
given by soft QED radiation effects since they 
distort the spectrum.

h
m02

m2 < m02

γ

[M. Bordone, A. Greljo, G. Isidori, D. M., A. Pattori, work in progress]
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Fig. 1 Dilepton invariant mass spectra in the SM for h ! 2e2µ decay.

blue bands for µ+µ� and e

+
e

� invariant mass spectra, re-
spectively. The important conclusion is that our procedure
gives an excellent approximation to full NLO EW correc-
tions at the level of one percent accuracy in this observable.
As expected, the corrections are larger for smaller recombi-
nation parameter m⇤. Moreover, the distributions in µ+µ�

and e

+
e

� invariant masses are the same within MC uncer-
tainty due to the fact that large fermion-mass logarithms can-
cel in sufficiently inclusive observables.

4 Conclusions
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Parameter counting and symmetry assumptions
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Neutral current

Symmetries impose relations among these observables.
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).

12

7
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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Parameter counting and symmetry assumptions
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Symmetries impose relations among these observables.
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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Symmetries impose relations among these observables.
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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Fig. 1 Bounds on the contact terms eZeL ,eZeR (at 68%, 95% and 99.7% CL) obtained from the TGC constraints, where lZ has been marginalized
(left plot) or set to zero (right plot). The dotted contours are G /GSM(h ! 2e2µ) iso-lines.

In principle, the measurements of the partial decay widths
G (h ! gg,Zg) allow to set strong bounds on e(CP)

gg,Zg that,
when combined with the TGC bounds, imply strong limits
on eZZ,WW through Eqs. (3) and (4). In practice, the extrac-
tion of such bounds is not straightforward since, at present,
only the measurements of the so-called signal strengths (or
s ⇥BR normalized to SM) are available. The latter include
also possible non-standard effects in the Higgs production
and in the total decay width (e.g. via kZZ 6= 1). We benefit
from various global fits available in the literature [5, 17–19],
which imply per-mil level limits on e(CP)

gg and per-cent level
limits on e(CP)

Zg . In particular, in the following we use the val-
ues [17]

kgg = 0.90±0.15, |kZg |< 3.18 (95% CL) , (5)

where kgg,Zg ⌘ egg,Zg/eSM�1L
gg,Zg , with eSM�1L

gg ⇡ 3.8⇥ 10�3,
and eSM�1L

Zg ⇡ 6.7⇥10�3.
Combining the bounds in Eq. (5) with those on the TGC,

we find the following bounds on the PO appearing in h ! 4`
decays (without using any information on such modes):
0
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As discussed above, the constraints on eCP
gg,Zg are equiva-

lent to those shown above for their CP-conserving counter-
parts egg,Zg , whereas no bound is available for kZZ and eCP

ZZ
(before analyzing h ! 4` data).

In the rest of this work we study the implications of
these constraints for h ! 4` (`= e,µ) decay rates and dilep-
ton invariant-mass distributions. More specifically, we will
propagate the errors shown above and analyze the allowed
room for non-standard effects. We include quadratic terms in
all following calculations, which in general should represent
subleading corrections in the EFT expansion. However, this
is not always the case in the general scenario lZ 6= 0, since
values as large as 0.4 are allowed for some of the pseudo-

Constraints on the PO in the linear EFT
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From the LEP-II bounds on
anomalous triple-gauge couplings:



6

h→2e2μλZ = 0

0 20 40 60 80 100
0.005

0.010

0.050

0.100

Δ
Γ
4
G
eV
/Γ

to
t

(ϵZeL , ϵZeR ) ∈ R68%
(ϵZeL , ϵZeR ) ∈ R95%

SM
Best fit

0 20 40 60 80 100

1.025

0.975

0.950

1.000

1.050

m12 (GeV)

R
at
io
w
.r.
t.
SM

(a) (b)

(c) (d)

Fig. 3 Electron pair invariant mass spectrum with a 4 GeV binning for h ! 2e2µ (top row) and h ! 4e (bottom row) decay obtained by varying
eZeL and eZeR within the 68% (green) and 95% (yellow) CLs bound from TGC (Fig. 1) with lZ generic in Fig. (a,c), and lZ = 0 in Fig. (b,d). In the
h ! 4e channel we pair randomly two opposite-sign leptons.

6

h ! 4e(4µ) vs. h ! 2e2µ . However, we stress that this is
a tiny effect on the partial rates (below 1% with present cuts)
once the LHC bound on egg is taken into account. This is
why this effect is not visible in Fig. 2. The smallness of this
effect also implies that improving the bounds on egg from
h ! 4e(4µ) is extremely challenging, especially in the gen-
eral case where the SM deviations from all the PO are con-
sidered at the same time.

The strict correlation between h! 2e2µ and h! 4e(4µ)
rates represents a firm prediction of the linear EFT frame-
works that is worth to test with future data: any violation of
the correlation would not only imply the existence of NP, but
would also imply that i) NP does not respect lepton univer-
sality, ii) the Higgs particle has a non-SU(2)L component.3

3.2 Single dilepton invariant-mass spectra

In addition to the partial widths, the rich kinematics of the
h ! 4` processes offers additional handles to probe the rel-
evant pseudo-observables. Since the contact terms eZeL,ZeR

have the same Lorentz structure as the SM term, angular
distributions are not modified and the only effect is on the
differential distributions in the dilepton invariant masses. On
the other hand, the other pseudo-observables, e(CP)

ZZ,Zg,gg , mod-
ify also angular distributions and thus a complete study of
the full kinematics of the events is necessary in order to ex-
tract them as efficiently as possible (see in particular Refs. [20–
24] for a recent discussion). In this work we focus only on
the invariant-mass distributions, both because the effect of
the contact terms in h ! 4` is the one less studied in the pre-
vious literature and because, as shown above, these PO are
the less constrained at the moment (at least in the general
TGC case).

Since the effects on the partial widths have already been
discussed, here we focus on the shapes, i.e. the normalized
differential distributions. To this purpose, we have generated
sets of PO inside the 68% and 95% CL bounds, keeping into
account their correlations. For each set we have determined
the normalized dilepton invariant-mass spectrum and its ra-
tio to the one obtained in the SM at tree level, and we have
finally built the envelopes of such spectra.

In Fig. 3 we present the distributions for h ! 2e2µ and
h ! 4e(4µ), setting kZZ = 1, eZZ,Zg,gg = 0 and letting vary
eZeL and eZeR within their allowed bounds. As can be seen,

3We stress that these two conditions are not sufficient to ensure large
deviations from universality in h ! 4` decays, but are necessary condi-
tions to observe it.

Fig. 4 Single differential distributions in the electron pair invariant
mass for h ! 2e2µ decay obtained by varying egg , eZg and eZZ in-
side the 95% CL bounds obtained from Eqs. (6-7) and setting eZ` = 0,
kZZ = 1. A lower cut on both lepton pair’s invariant masses of 4 GeV is
applied. In the upper plot the differential rate is normalized to the total
rate while in the lower one we take the ratio of this quantity to the one
obtained in the SM at the tree level.

although the effect of the contact terms on the total rate is
very large, of O(100%) in the lZ 6= 0 case, the difference in
the shape with respect to the SM is much smaller, namely
. 15% for lZ 6= 0. A similar cancellation is present also
in the lZ = 0 case, although the relative effect is less pro-
nounced. The cancellation of the non-standard effects in the
normalized spectrum is, at least in part, a consequence of the
strong positive correlation between eZeL and eZeR shown in
Fig. 1.

In Fig. 4 we study the effect of eZZ,Zg,gg on the invariant-
mass distribution. Here it is important to notice that the sen-
sitivity to eZg,gg depends strongly on the infrared cutoff im-
posed on the dilepton invariant masses, as expected due to
the associated photon pole(s). As shown in Ref. [20], de-
creasing the cut on m`` from 12 GeV to 4 GeV substan-
tially improves the sensitivity to these couplings, even ex-
cluding the m`` region around the ° resonances. Moreover,

These PO can be studied also from
angular distributions.

From these bounds we can extract precise predictions for Higgs data, 
such as total decay rates or di-lepton invariant mass spectra:

Predictions for h → 4ℓ in the linear EFT

14
Small deviations allowed in the shape.
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kZZ = 1. A lower cut on both lepton pair’s invariant masses of 4 GeV is
applied. In the upper plot the differential rate is normalized to the total
rate while in the lower one we take the ratio of this quantity to the one
obtained in the SM at the tree level.

although the effect of the contact terms on the total rate is
very large, of O(100%) in the lZ 6= 0 case, the difference in
the shape with respect to the SM is much smaller, namely
. 15% for lZ 6= 0. A similar cancellation is present also
in the lZ = 0 case, although the relative effect is less pro-
nounced. The cancellation of the non-standard effects in the
normalized spectrum is, at least in part, a consequence of the
strong positive correlation between eZeL and eZeR shown in
Fig. 1.

In Fig. 4 we study the effect of eZZ,Zg,gg on the invariant-
mass distribution. Here it is important to notice that the sen-
sitivity to eZg,gg depends strongly on the infrared cutoff im-
posed on the dilepton invariant masses, as expected due to
the associated photon pole(s). As shown in Ref. [20], de-
creasing the cut on m`` from 12 GeV to 4 GeV substan-
tially improves the sensitivity to these couplings, even ex-
cluding the m`` region around the ° resonances. Moreover,

These PO can be studied also from
angular distributions.

From these bounds we can extract precise predictions for Higgs data, 
such as total decay rates or di-lepton invariant mass spectra:

Predictions for h → 4ℓ in the linear EFT

14
Small deviations allowed in the shape.

Crucial to test these predictions from data!

Any measured deviation would have deep physical consequences:
non-linear realization of EW symmetry, flavor non-universality, …



Symmetries impose relations among Higgs PO, which can be tested by Higgs data only.

Assuming a underlying linear EFT we obtained relations among Higgs and non-Higgs 
processes. Given LEP constraints we derived detailed predictions for h → 4ℓ processes.

Testing these predictions from data would provide an important test for the linear EFT.

PO can be implemented both for Matrix Element Methods, and Montecarlo (MG5).

Clear connection to
measurable distributions.

Easy to match to any EFT
in any basis.

Pseudo-observables
Directly related to physical
properties of the amplitude.

Conclusions

15
Thank you!



Kinematical distributions

16

The matrix element squared is directly obtained analytically from the amplitude.
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Using the explicit expressions of F ff 0

1 and F ff 0

3 in Eqs. (9)–(10) leads to a second order
polynomial in X and ✏X for each value of q21 and q22. Under the hypothesis of an under-
lying EFT, only the interference terms of NP with the SM amplitude are expected to be
relevant in a large fraction of the phase pace. If this were not the case, the approxima-
tion of neglecting terms in the amplitudes corresponding to higher-dimensional operators

17
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The matrix element squared is directly obtained analytically from the amplitude.
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Using the explicit expressions of F ff 0
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This can be used for Matrix Element Method experimental analysis,
or to derive differential distributions:
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Example for
CP conserving terms
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For example, the 11 term is simply:
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Figure 1: Normalized di↵erential h ! e+e�µ+µ� decay distribution in m12 ⌘
p
q21 in the

SM. Tree level predictions and full O(↵) electroweak corrections with Prophecy4F Monte
Carlo generator [13] are shown with blue and red dots, respectively. The solid black line
is obtained after integrating the analytic formula (Eq. 42) over q22 for ZZ = 1 and ✏X = 0.

of the custodial symmetry relations in Eqs. (33), (34) and (36).

6 Di↵erential distributions for h ! e+e�µ+µ�

In this section we illustrate the importance of studying di↵erential decay distributions
for extracting the pseudo-observables defined in Section 2. We concentrate on the Higgs
boson decay to pairs of muons and electrons, which is particularly clean and possesses
non-trivial kinematics. As a first step, we calculate the modification of the total decay
rate to e+e�µ+µ� keeping only terms linear in ✏X and �ZZ ⌘ ZZ � 1. We find

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 1+2�ZZ�2.5✏ZeR +2.9✏ZeL �2.5✏ZµR +2.9✏ZµL +0.5✏ZZ�0.9✏Z�+0.01✏�� .

(38)
Obviously, the measurement of the total rate is not enough to extract the pseudo-observables
and one should exploit the full kinematics of the process.

6.1 Analytic invariant mass distributions

In the following we derive fully analytic expressions for the double di↵erential decay
distribution in each lepton pair’s invariant mass. Starting with Eq. (8), we calculate the
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The matrix element squared is directly obtained analytically from the amplitude.
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This can be used for Matrix Element Method experimental analysis,
or to derive differential distributions:
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Example for
CP conserving terms
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Figure 1: Normalized di↵erential h ! e+e�µ+µ� decay distribution in m12 ⌘
p
q21 in the

SM. Tree level predictions and full O(↵) electroweak corrections with Prophecy4F Monte
Carlo generator [13] are shown with blue and red dots, respectively. The solid black line
is obtained after integrating the analytic formula (Eq. 42) over q22 for ZZ = 1 and ✏X = 0.

of the custodial symmetry relations in Eqs. (33), (34) and (36).

6 Di↵erential distributions for h ! e+e�µ+µ�

In this section we illustrate the importance of studying di↵erential decay distributions
for extracting the pseudo-observables defined in Section 2. We concentrate on the Higgs
boson decay to pairs of muons and electrons, which is particularly clean and possesses
non-trivial kinematics. As a first step, we calculate the modification of the total decay
rate to e+e�µ+µ� keeping only terms linear in ✏X and �ZZ ⌘ ZZ � 1. We find

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 1+2�ZZ�2.5✏ZeR +2.9✏ZeL �2.5✏ZµR +2.9✏ZµL +0.5✏ZZ�0.9✏Z�+0.01✏�� .

(38)
Obviously, the measurement of the total rate is not enough to extract the pseudo-observables
and one should exploit the full kinematics of the process.

6.1 Analytic invariant mass distributions

In the following we derive fully analytic expressions for the double di↵erential decay
distribution in each lepton pair’s invariant mass. Starting with Eq. (8), we calculate the
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distribution in each lepton pair’s invariant mass. Starting with Eq. (8), we calculate the

16

From this we can get the total rate dependence on the PO:
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By crossing symmetry, the same correlation function
(in a different kinematical region and with different fermionic currents)
enters also in EW Higgs production.

h

Jq

Jq'

VBF:

h

Jq

V/Jf

V h:

2.2 Pseudo-observables in h ! ff̄ decays

In analogy to the e↵ective couplings of Z and W bosons to fermions, for each fermion
species we can introduce two real e↵ective couplings (yfS,P ) defined by

A(h ! ff̄) = � ip
2

h
(yfS + iyfP )f̄LfR + (yfS � iyfP )f̄RfL

i
. (5)

The “dressing” of this amplitude with soft QED and QCD radiation is straightforward.
The measurement of �(h ! ff̄) determines the combination |yfS|2+ |yfP |2, while the yfP/yfS
ratio can be determined only if the lepton polarization is experimentally accessible. If CP
is conserved only one of the two e↵ective couplings is allowed: if h is a CP-even state,
then only yfS is allowed.

Within the SM, at the tree-level, one finds

yf,SMS =

p
2mf

vF
, yf,SMP = 0 , (6)

where vF = (
p
2GF )�1/2, and GF is the Fermi constant extracted from the muon decay.

The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.

7

[Work in progress]

In this case since the possible high momentum transfer at the LHC
could cause issues with the validity of the EFT expansion. Not an issue with form factors.

h → 4f
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The same approach can be extended to charged current decays

Charged current decays
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νµ

Note that the q2-dependent terms in Eq. (26) cancel one of the two propagators in
�SM

3 (q21, q
2
2). This implies that such terms can e↵ectively be seen as contact interactions

with a photon (of the type h�ff̄). However, contrary to the contact terms appearing
in F ff 0

1 , these contact terms receive contributions from EFT operators of D � 7 and
therefore can be fixed to their SM values.

To make contact with the -framework adopted by ATLAS and CMS [4, 5], we can
trade the ✏��,�Z parameters for ��,Z�, defined by

��(Z�) =
✏��(Z�)

✏SM�1L
��(Z�)

, (27)

such that SM
��,Z� = 1.

5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (28)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (29)

Finally, the mixed processes h ! e+e�⌫⌫̄ and h ! µ+µ�⌫⌫̄ can be described by a subset
of the coe�cients already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (30)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.
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Only c.c: Interference
of c.c. and n.c.:

OHf = i(H† $
DµH)f̄�µf = �1

2

p
g2 + g02Zµ(v + h)2f̄�µf (1)

To eq.(8) I added a (flavour universal) local interaction

F ff 0

1 � �ff 0

m4
Z

(2)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 2ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
�
✏2ZeR + ✏2ZeL + ✏2ZµL

+ ✏2ZµR

�
+ 8.4(�2`L`L + 2�2`L`R + �2`R`R)+

+ all the mixed terms

(3)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m2
Z/⇤

2
and �X ⇠ m4

Z/⇤
4
, and therefore to neglect the quadratic

terms.

h ! eReLµLµR / yeyµ (4)

O(x) = h(x) ē(x)�µe(x) µ̄(x)�
µµ(x) (5)

e = eL, eR, µ = µL, µR (6)

A =i
2m2

Z

vF
(ē�↵e)(µ̄��µ)⇥

✓
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+

✏Ze

m2
Z

gµZ
PZ(q22)

+
✏Zµ

m2
Z

geZ
PZ(q21)

◆
g↵�+

+

✓
✏ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ Z�✏

SM-1L
Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ��✏

SM-1L
��

e2QeQµ

q21q
2
2

◆
⇥ q1 · q2 g↵� � q2↵q1�

m2
Z

+

+

✓
✏CP
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ ✏CP

Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ✏CP

��
e2QeQµ

q21q
2
2

◆
"↵�⇢�q2⇢q1�

m2
Z

�

(7)

A =i
2m2

W

vF
(ēL�↵⌫e)(⌫̄µ��µL)⇥

✓
WW

(geW )⇤gµW
PW (q21)PW (q22)

+
(✏WeL)

⇤

m2
W

gµW
PW (q22)

+
✏WµL

m2
Z

(geW )⇤

PW (q21)

◆
g↵�+

+ ✏WW
(geW )⇤gµW

PW (q21)PW (q22)
⇥ q1 · q2 g↵� � q2↵q1�

m2
W

+ ✏CP
WW

(geW )⇤gµW
PW (q21)PW (q22)

"↵�⇢�q2⇢q1�
m2

W

� (8)
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