

Higgs boson production at the LHC

Krisztian Peters CERN

1st June 2015 27th Rencontres de Blois

Higgs at the LHC

Breathtaking progress in O(2) years

ATLAS and CMS experiments

ATLAS: emphasis on excellent jet and missing E_T resolution, particle identification, and standalone muon measurement

CMS: emphasis on excellent electron/photon and tracking (muon) resolution

Detectors well understood, stable operation and data taking efficiencies above 90%

Challenges with high luminosity

Continuously improve triggering, reconstruction and identification algorithms

Main impact on jets, missing E_T and tau reconstruction (as well as on trigger rates and computing)

Z → μμ event with 25 reconstructed vertices

Jets and missing E_T

Include tracking information to mitigate effects from pileup interactions

Several algorithms from ATLAS and CMS

Example:

Track based measurement of soft objects, O(20%) resolution improvement

Reconstructed - True missing E_T

Higgs production at the LHC

~500k Higgs bosons produced at the LHC

Higgs production at the LHC

Only one in ~10¹⁰ events will be a Higgs boson at the LHC

Overall experimental strategy

Investigate a large number of final states, with sub-channels to separate different productions (and to increase overall significance)

Probe Lagrangian structure. Measure mass, spin and CP properties → Next talk from Guillelmo

Channel	ggF	VBF	VH	ttH
YY	✓	✓	✓	✓
$ZZ \rightarrow 4\ell$	✓	✓	✓	
$WW \rightarrow \ell\ell + 2v$	✓	✓	✓	✓
ττ	✓	✓	✓	
bb		✓	✓	✓
μμ	√	√		
Ζγ	√	√		

Mass	Spin
✓	✓
✓	✓
	✓

Main discovery channels

Simple signatures, with excellent mass resolution

BR ~ 0.2%

Exp. signal yield	S/B
~450	~3%

BR ~ 0.013%

Exp. signal yield	S/B
~20	~1.6

$H \rightarrow ZZ^* \rightarrow 4\ell$

Optimise for high lepton selection efficiency and good 4-lepton mass resolution

Main backgrounds: SM ZZ* production (irreducible), Z+jj, top

Di-photon decay mode

Select events with two isolated high pT photons

Quantify excess in steeply falling di-photon mass spectrum

Energy scale and resolution

Electron and muon energy scale (and resolution) corrections determined from large Z and J/ψ samples

Photons need accurate material description for $e \rightarrow \gamma$ extrapolation, studied with several *in-situ* measurements

Improving the sensitivity

Separate events into categories with different S/B, resolutions and different relative contributions of signal production modes

$H \rightarrow Z\gamma$ and $H \rightarrow \mu\mu$

Both analyses exploit similar experimental techniques to $H \rightarrow \gamma \gamma$

No significant excesses observed yet, limits $\sigma/\sigma_{SM} \sim 7\text{-}10$ at m_H = 125 GeV

Differential cross sections

Probe underlying kinematic properties of Higgs boson production and decay

Variables specifically sensitive to:

- Spin-parity
- Different production modes
- Higher-order corrections

Differential cross sections

Probe underlying kinematic properties of Higgs boson production and decay

Variables specifically sensitive to:

- Spin-parity
- Different production modes
- Higher-order corrections

$H \rightarrow WW^* \rightarrow e\nu\mu\nu$ candidate and two jets with VBF topology

Projected η - φ *view*

Run 214680, Ev. no. 271333760 Nov. 17, 2012, 07:42:05 CET

Exp. signal yield	S/B
~500	~15%

Analysis strategy

Various missing E_T related cuts to remove main DY contribution

Split by jet-multiplicity and lepton flavour

Topological cuts for further bkgr. reduction / VBF selection

Analysis strategy

Various missing E_T related cuts to remove main DY contribution

Split by jet-multiplicity and lepton flavour

Topological cuts for further bkgr. reduction / VBF selection

Final signal extraction

Most sensitive variable: transverse mass

Need good understanding of all high-energy SM processes

Evidence for VBF production

Crucial for coupling measurements

$H \rightarrow \tau \tau$

Exp. signal yield	S/B
~300	~1-30%

Due to overwhelming multi-jet backgrounds, need additional signature from exclusive production modes (VH, ttH, VBF)

Multivariate analysis

Increase signal discrimination by combining several kinematic distributions into a multivariate discriminant

Evidence for Higgs-Yukawa coupling

A fundamental part of the Standard Model

Higgs boson rates per decay channel

$$\mu = \frac{\sigma \cdot BR}{(\sigma \cdot BR)_{SM}}$$

Higgs boson production

Present rates in different production and decay channels in agreement with the SM expectations

The top-Yukawa coupling will be one of the most important measurements of LHC Run 2

Conclusions

The LHC Run 1 was an exciting time and a great success for particle physics

An entire new field emerged with a large number of interesting analyses

Present measurements indicate no deviations from the SM

Looking forward to LHC Run 2 for further exciting discoveries!