SHiP: a new facility for searching for long-lived neutral particles and studying the tau neutrino properties

Search for Hidden Particles

Géraldine Conti (CERN) on behalf of the SHiP collaboration

27th Rencontres de Blois, June 3rd 2015

Energy versus Intensity Frontiers

- Experimental facts of *Beyond Standard Model (BSM)* physics (neutrino masses, excess of matter over antimatter in the universe,...)
- Theory motivations for BSM physics (hierarchy problem, mass pattern,...)

SHiP : masses below O(10) GeV

Proposal for a new facility at the SPS

400 GeV protons from SPS, E_{CM}=27 GeV

Spill = 4x10¹³ protons on target per cycle of 7.2s with slow beam extraction (1s)

reduces **detector occupancy**, reduces **heat load of the target** hence combinatorial background

4x10¹⁹ protons on target per year (~200 days of running)

The SHiP experiment

The Target

The Muon filter

The v_{τ} detector

The vacuum vessel

Example: long-lived neutral particles (N_{2,3})

- 10^{-6} mbar vacuum to suppress the v interactions
- Elliptical (5m x 10m) to avoid the large horizontal μ flux
- Double-wall structure, space filled with liquid scintillator to tag background entering from the sides

The spectrometer

Usual layers:

Uses existing technologies •

- - tracking system with B-field to reconstruct signal
 - ECAL and μ -chambers for e/ γ identification, π^0 and η reconstruction
 - HCAL for π/μ separation

Physics cases

Before LHC Run1, the idea of naturalness was very popular: the new physics scale must be close to the Higgs scale → possible scenarios

LHC Run2 is Sensitive to it

Intensity frontier facilities (SHiP) are sensitive to it (scale of NP not always ≈ mass of new particles!) OR

Portals = possible interactions between new physics (hidden sector) and the SM particles

Vector portal Scalar portal Neutrino portal Axion portal

SHiP can test this (example given later)

No new

physics scale

Beyond portals : <mark>SUSY</mark>

Models tested	Final states
Neutrino portal, SUSY neutralino	Ιπ, ΙΚ, Ιρ (Ι=e,μ,ν) (ρ+→π+π ⁰)
Vector, scalar, axion portals, SUSY sgoldstino	e⁺e⁻, μ⁺μ⁻
Vector, scalar, axion portals, SUSY sgoldstino	π ⁺ π ⁻ , K ⁺ K ⁻
Neutrino portal, SUSY neutralino, axino	+ ⁻ ν
Axion portal, SUSY sgoldstino	γγ
SUSY sgoldstino	$\pi^0 \pi^0$

The Neutrino portal

 Example of one BSM theory with no new physics between Fermi and Planck scales: the VMSM T. Asaka, M. Shaposhnikov, PL B620 (2005) 17

N_{1,2,3} = heavy neutral lepton (HNL), heavy (RH) neutrinos, sterile neutrinos,...

N1 is a dark matter candidate (m≈O(1) keV)

Compatible with XMM-Newton emission line at E≈3.6 keV Astrophys.J.789, 13(2014),

Phys.Rev.Lett. 113,25301

N2,N3 give masses to neutrinos and produce baryon asymmetry of the Universe (m≈O(100) MeV – GeV)

The Higgs gives masses to quarks, leptons, Z and W, and it inflates the Universe 11

The Neutrino portal

 The SHiP limit are set on N_{2,3} (N₁ is the dark matter candidate)

Coupling of the HNL

M_D≈2

 The region above the kaon mass is not yet well covered and SHiP has the best sensitivity reach

M_⊮≈0.5

	l		
	D and B decays	$Z \to N\nu \to (\ell + 2 \text{jets})\nu$	$pp \to W^* \to N\ell^{\pm} \to \ell^{\pm}\ell^{\pm}jj$
Impressive limits from PS-191	LHCb, BELLE	L3, DELPHI	ATLAS/CMS
	SHiP has the best sensitivity reach	Best explored at FCC e⁺e⁻ mode	ATLAS/CMS in HL-LHC

The Scalar and Vector portals

SHiP,

QCD

v_{τ} physics at SHiP

• v_{τ} observations

- DONUT (Tevatron) : 9 events (from charm) with 1.5 backgrounds
 - Not possible to distinguish the charge of the $\boldsymbol{\tau}$
- OPERA (Gran Sasso) : 4 events with 0 bakground
 - from $v_{\mu} \rightarrow v_{\tau}$ oscillations, only τ^{-} leptons
- SHiP would increase by three orders of magnitude the current ν_τ sample, allowing for cross section measurements at inclusive and differential levels
- The anti- v_{τ} has never been observed
 - SHiP could observe the anti- v_{τ} by detecting the τ^+ lepton produced
- Structure functions F4 and F5 in v_{τ} and anti- v_{τ} charged current cross sections can be measured (deep inelastic scattering)
 - At incident energy E=20 GeV, these terms account for 30% of the cross section

Timescale

- CERN decision on the strategy with SHiP within a year
 - Weeks of test beam planned on SPS and PS this year to test detector technologies
- 10 years from submission of Technical Proposal to data taking
- 5 years of data taking (from 2025) of 2x10²⁰ protons on target

Why signing up for SHiP?

- could explore with unprecedented sensitivity phase spaces of "Beyond the Standard Model" physics that are of greatest interest in light of the LHC and astrophysical results, for example heavy neutral leptons with masses below O(10) GeV
- could provide important results in the v_{τ} sector
- is rather low-cost

uses **existing** detector technologies

- recycles material (Goliath magnet)
- takes the lifetime of a Swiss passport to become real !

Dark matter

Baryon

asymmetry

45 institutes in SHiP > 80 theorists

The crew members

The SHiP Collaboration

M. Anelli¹⁴, S. Aoki¹⁷, G. Arduini^{33(BE)}, J.J. Back⁴⁰, A. Bagulya²⁴, W. Baldini¹¹ A. Baranov³⁰, G.J. Barker⁴⁰, S. Barsuk⁴, M. Battistin^{33(EN)}, J. Bauche^{33(TE)}, A. Bay³⁵ V. Bayliss⁴¹, L. Bellagamba⁹, G. Bencivenni¹⁴, M. Bertani¹⁴, O. Bezshyyko⁴⁴, D. Bick⁷, N. Bingefors³², A. Blondel³⁴, M. Bogomilov¹, A. Boyarsky⁴⁴, D. Bonacorsi^{9,b} D. Bondarenko²³, W. Bonivento¹⁰, J. Borburgh^{33(TE)}, T. Bradshaw⁴¹, R. Brenner³², D. Breton⁴, N. Brook⁴³, M. Bruschi⁹, A. Buonaura^{12,e}, S. Buontempo¹², S. Cadeddu¹⁰ A. Calcaterra¹⁴, M. Calviani^{33(EN)}, M. Campanelli⁴³, C. Capoccia¹⁴, A. Cecchetti¹⁴ A. Chatterjee³⁴, J. Chauveau⁵, A. Chepurnov²⁹, M. Chernyavskiy²⁴, P. Ciambrone¹⁴, C. Cicalo¹⁰, G. Conti³³, K. Cornelis^{33(BE)}, M. Courthold⁴¹, M. G. Dallavalle⁹, N. D'Ambrosio¹³, G. De Lellis^{12,e}, M. De Serio^{8,a}, L. Dedenko²⁹, A. Di Crescenzo¹², N. Di Marco¹³, C. Dib², J. Dietrich⁶, H. Dijkstra³³, D. Domenici¹⁴, S. Donskov²⁶, D. Druzhkin^{25,g} J. Ebert⁷, U. Egede⁴², A. Egorov²⁷, V. Egorychev²², M.A. El Alaoui², T. Enik²¹, A. Etenko F. Fabbri⁹, L. Fabbri^{9,b}, G. Fedorova²⁹, G. Felici¹⁴, M. Ferro-Luzzi³³, R.A. Fini⁸, M. Franke⁶ M. Fraser^{33(TE)}, G. Galati^{12,e}, B. Giacobbe⁹, B. Goddard^{33(TE)}, L. Golinka-Bezshyyko⁴⁴, D. Golubkov²², A. Golutvin⁴², D. Gorbunov²³, E. Graverini³⁶, J-L Grenard^{33(EN)}, A.M. Guler³⁷, C. Hagner⁷, H. Hakobyan², J.C. Helo², E. van Herwijnen³³, D. Horvath^{33(EN)} M. Iacovacci^{12,e}, G. Iaselli^{8,a}, R. Jacobsson³³, I. Kadenko⁴⁴, M. Kamiscioglu³⁷ C. Kamiscioglu³⁸, G. Khaustov²⁶, A. Khotjansev²³, B. Kilminster³⁶, V. Kim²⁷, N. Kitagawa¹ K. Kodama¹⁶, A. Kolesnikov²¹, D. Kolev¹, M. Komatsu¹⁸, N. Konovalova²⁴, S. Koretskiy^{25,g} I. Korolko²², A. Korzenev³⁴, S. Kovalenko², Y. Kudenko²³, E. Kuznetsova²⁷, H. Lacker⁷, A. Lai¹⁰, G. Lanfranchi¹⁴, A. Lauria^{12,e}, H. Lebbolo⁵, J.-M. Levy⁵, L. Lista¹², P. Loverre^{15,f} A. Lukiashin²⁹, V.E. Lyubovitskij^{2,h}, A. Malinin²⁵, M. Manfredi^{33(GS)} A. Perillo-Marcone^{33(EN)}, A. Marrone^{8,a}, R. Matev¹, E.N. Messomo³⁴, P. Mermod³⁴, S. Mikado¹⁹, Yu. Mikhaylov²⁶, J. Miller², D. Milstead³¹, O. Mineev²³, R. Mingazheva²⁴, G. Mitselmakher⁴⁵, M. Miyanishi¹⁸, P. Monacelli^{15, f}, A. Montanari⁹, M.C. Montesi^{12, e} G. Morello¹⁴, K. Morishima¹⁸, S. Movtchan²¹, V. Murzin²⁷, N. Naganawa¹⁸, T. Naka¹⁸ M. Nakamura¹⁸, T. Nakano¹⁸, N. Nurakhov²⁵, B. Obinyakov²⁵, K. Ocalan³⁷, S. Ogawa²⁰, V. Oreshkin²⁷, A. Orlov^{25,g}, J. Osborne^{33(GS)}, P. Pacholek^{33(EN)}, J. Panman³³, A. Paoloni¹⁴ L. Paparella^{8,a}, A. Pastore⁸, M. Patel⁴², K. Petridis³⁹, M. Petrushin^{25,g}, M. Poli-Lener¹⁴, N. Polukhina²⁴, V. Polyakov²⁶, M. Prokudin²², G. Puddu^{10,c}, F. Pupilli¹⁴, F. Rademakers³³ A. Rakai^{33(EN)}, T. Rawlings⁴¹, F. Redi⁴², S. Ricciardi⁴¹, R. Rinaldesi^{33(EN)}, T. Roganova²⁹, A. Rogozhnikov³⁰, H. Rokujo¹⁸, A. Romaniouk²⁸, G. Rosa^{15, f}, I. Rostovtseva²², T. Rovelli^{9, b}, O. Ruchayskiy³⁵, T. Ruf³³, G. Saitta^{10,c}, V. Samoylenko²⁶, V. Samsonov²⁸, A. Sanz Ull^{33(TE)}, A. Saputi¹⁴, O. Sato¹⁸, W. Schmidt-Parzefall⁷, N. Serra³⁶, S. Sgobba^{33(EN)} M. Shaposhnikov³⁵, P. Shatalov²², A. Shaykhiev²³, L. Shchutska⁴⁵, V. Shevchenko²⁵, H. Shibuya²⁰, Y. Shitov⁴², S. Silverstein³¹, S. Simone^{8,a}, M. Skorokhvatov^{28,25}, S. Smirnov²⁸, E. Solodko^{33(TE)}, V. Sosnovtsev^{28,25}, R. Spighi⁹, M. Spinetti¹⁴, N. Starkov²⁴, B. Storaci³⁶ C. Strabel^{33(DGS)}, P. Strolin^{12,e}, S. Takahashi¹⁷, P. Teterin²⁸, V. Tioukov¹², D. Tommasini^{33(TE)}, D. Treille³³, R. Tsenov¹, T. Tshchedrina²⁴, A. Ustyuzhanin^{25,30}, F. Vannucci⁵, V. Venturi^{33(EN)}, M. Villa^{9,b}, Heinz Vincke^{33(DGS)}, Helmut Vincke^{33(DGS)}, M. Vladymyrov²⁴, S. Xella³, M. Yalvac³⁷, N. Yershov²³, D. Yilmaz³⁸, A. U. Yilmazer³⁸, G. Vankova-Kirilova¹, Y. Zaitsev²², A. Zoccoli^{9,b}

A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case

Sergey Alekhin,^{1,2} Wolfgang Altmannshofer,³ Takehiko Asaka,⁴ Brian Batell,⁵ Fedor Bezrukov,^{6,7} Kyrylo Bondarenko,⁸ Alexey Boyarsky^{*},⁸ Nathaniel Craig,⁹ Ki-Young Choi,¹⁰ Cristóbal Corral,¹¹ David Curtin,¹² Sacha Davidson,^{13,14} André de Gouvêa,¹⁵ Stefano Dell'Oro,¹⁶ Patrick deNiverville,¹⁷ P. S. Bhupal Dev,¹⁸ Herbi Dreiner,¹⁹ Marco Drewes,²⁰ Shintaro Eijima,²¹ Rouven Essig,²² Anthony Fradette,¹⁷ Björn Garbrecht,²⁰ Belen Gavela,²³ Gian F. Giudice,⁵ Dmitry Gorbunov,^{24,25} Stefania Gori,³ Christophe Grojean[§], ^{26,27} Mark D. Goodsell, ^{28,29} Alberto Guffanti, ³⁰ Thomas Hambye, ³¹ Steen H. Hansen,³² Juan Carlos Helo,¹¹ Pilar Hernandez,³³ Alejandro Ibarra,²⁰ Artem Ivashko,^{8,34} Eder Izaguirre,³ Joerg Jaeckel[§],³⁵ Yu Seon Jeong,³⁶ Felix Kahlhoefer,²⁷ Yonatan Kahn,³⁷ Andrey Katz,^{5,38,39} Choong Sun Kim,³⁶ Sergey Kovalenko,¹¹ Gordan Krnjaic,³ Valery E. Lyubovitskij,^{40,41,42} Simone Marcocci,¹⁶ Matthew Mccullough,⁵ David McKeen,⁴³ Guenakh Mitselmakher ,⁴⁴ Sven-Olaf Moch,⁴⁵ Rabindra N. Mohapatra,⁴⁶ David E. Morrissey,⁴⁷ Maksym Ovchynnikov,³⁴ Emmanuel Paschos,⁴⁸ Apostolos Pilaftsis,¹⁸ Maxim Pospelov[§],^{3,17} Mary Hall Reno,⁴⁹ Andreas Ringwald,²⁷ Adam Ritz,¹⁷ Leszek Roszkowski,⁵⁰ Valery Rubakov,²⁴ Oleg Ruchayskiy^{*},²¹ Jessie Shelton,⁵¹ Ingo Schienbein,⁵² Daniel Schmeier,¹⁹ Kai Schmidt-Hoberg,²⁷ Pedro Schwaller,⁵ Goran Senjanovic, 53,54 Osamu Seto, 55 Mikhail Shaposhnikov*, §,21 Brian Shuve, 3 Robert Shrock,⁵⁶ Lesya Shchutska[§],⁴⁴ Michael Spannowsky,⁵⁷ Andy Spray,⁵⁸ Florian Staub,⁵ Daniel Stolarski,⁵ Matt Strassler,³⁹ Vladimir Tello,⁵³ Francesco Tramontano[§],^{59,60} Anurag Tripathi,⁵⁹ Sean Tulin,⁶¹ Francesco Vissani,^{16,62} Martin W. Winkler,⁶³ Kathryn M. Zurek^{64,65}

arXiv:1504.04956v1 [physics.ins-det] arXiv:1504.04855v1 [hep-ph]

Physics case is >200 pages long !

Back-Up Slides

Institutes

¹Faculty of Physics, Sofia University, Sofia, Bulgaria ² Universidad Técnica Federico Santa María and Centro Científico Tecnológico de Valparaíso, Valparaíso, Chile ³Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark ⁴LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France ⁵LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France ⁶Humboldt-Universität zu Berlin, Berlin, Germany ⁷ Universität Hamburg, Hamburg, Germany ⁸Sezione INFN di Bari, Bari, Italy ⁹Sezione INFN di Bologna, Bologna, Italy ¹⁰Sezione INFN di Cagliari, Cagliari, Italy ¹¹Sezione INFN di Ferrara, Ferrara, Italy ¹²Sezione INFN di Napoli, Napoli, Italy ¹³Laboratori Nazionali dell'INFN di Gran Sasso, L'Aquila, Italy ¹⁴Laboratori Nazionali dell'INFN di Frascati, Frascati, Italy ¹⁵Sezione INFN di Roma La Sapienza, Roma, Italy ¹⁶Aichi University of Education, Kariya, Japan ¹⁷Kobe University, Kobe, Japan ¹⁸Nagoya University, Nagoya, Japan ¹⁹Nihon University, Narashino, Chiba, Japan ²⁰ Toho University, Funabashi, Chiba, Japan ²¹ Joint Institute of Nuclear Research (JINR), Dubna, Russia ²²Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia ²³Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia ²⁴ P.N. Lebedev Physical Institute (LPI), Moscow, Russia ²⁵National Research Centre Kurchatov Institute (NRC), Moscow, Russia ²⁶Institute for High Energy Physics (IHEP), Protvino, Russia ²⁷ Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia ²⁸Moscow Engineering Physics Institute (MEPhI), Moscow, Russia ²⁹Skobeltsyn Institute of Nuclear Physics of Moscow State University (SINP MSU), Moscow, Russia ³⁰ Yandex School of Data Analysis, Moscow, Russia ³¹Stockholm University, Stockholm, Sweden ³² Uppsala University, Uppsala, Sweden ³³European Organization for Nuclear Research (CERN), Geneva, Switzerland ³⁴University of Geneva, Geneva, Switzerland ³⁵Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland ³⁶Physik-Institut, Universität Zürich, Zürich, Switzerland ³⁷ Middle East Technical University (METU), Ankara, Turkey ³⁸Ankara University, Ankara, Turkey ³⁹H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom ⁴⁰Department of Physics, University of Warwick, Coventry, United Kingdom ⁴¹STFC Rutherford Appleton Laboratory, Didcot, United Kingdom ⁴²Imperial College London, London, United Kingdom ⁴³University College London, London, United Kingdom ⁴⁴ Taras Shevchenko National University of Kyiv, Kyiv, Ukraine ⁴⁵University of Florida, Gainesville, Florida, United States ^a Università di Bari, Bari, Italy ^bUniversità di Bologna, Bologna, Italy ^cUniversità di Cagliari, Cagliari, Italy ^d Università di Ferrara, Ferrara, Italy ^eUniversità di Napoli "Federico II", Napoli, Italy ^f Università di Roma La Sapienza, Roma, Italy ^gAlso at N.A. Dollezhal Research and Development Institute of Power Engineering - NIKIET, Moscow, Russia

^hAlso at Tomsk State University and Tomsk Polytechnic University, Tomsk, Russia

The target

- Challenging due to high average beam power deposited on the target
 - 2.56 MW during spill of 1s (peak)
 - ~350 kW averaged over 7s cycle
- Hybrid target, water cooled
 - 58cm of titanium-zirconium doped molybdenum
 - 58cm of pure tungsten, water cooled
 - heavy to stop π/K before they decay
- ~1.2m-long, 30x30cm² to maximize shower containment
- Embedded in cast iron bunker (440m³)

The muon filter

- Reduce the μ flux to <100k μ /spill (also to reduce occupancy in the v_{τ} detector)
- Active μ filter (50m) made of 2 magnets
 (B_y = 40 Tm to bend out 350 GeV μ beyond the 5 m vacuum vessel aperture)

1st part to separate μ⁺/μ⁻:

 2^{nd} part to remove the μ bent back by the return field :

The ν_{τ} detector

RPC and drift tubes :

 Identify μ coming from τ decays; μ momentum measurement

The v_{τ} detector : target

OPERA-type modules (emulsion cloud chambers (ECC))

• A unitary cell of the neutrino detector has two parts :

 hundreds of target units assembled together to achieve the ton scale for a very high resolution device

The vacuum vessel

- Veto tagger just after v_{τ} detector to tag indirectly neutral K produced by v and μ interactions in the passive material and μ entering the vessel from the front
- Elliptical structure to avoid the large μ flux deflected horizon-tally by the μ shield
- 10⁻⁶ mbar vacuum to suppress the
 - \mathbf{v} interactions

5m

- Double-wall structure, space filled with liquid scintillator to tag background entering from the sides
- tracking detector to reject residual charged bkg in the forward region (K_s⁰,..)

50m

The spectrometer

Signal reconstruction and background rejection: warm magnet (LHCb) with 0.65Tm bending power; tracker (NA62) with horizontal straws and stereo angle

Veto anti-coincidence from combinatorial : timing detector (50ps resolution)

e/ γ identification, π^0 and γ reconstruction: ECAL (Shashlik (sampling scintillator-lead structure read out by plastic WLS fibres), LHCb)

 π/μ separation : hadronic calorimeter (similar technology as ECAL), muon detector (WLS fiber bars, MINOS) ²⁶

Vector Portal

- Existence of new vector states associated with new U(1) gauge groups : SU(3) x SU(2) x [U(1)]ⁿ
- LHC : strong limits provided that the coupling to the SM is large
- Light vector states (GeV) with small couplings to SM not well constrained
- Motivation: could provide solution to m g-2 discrepancy, explain the strong emission of 511 keV photons from the galactic bulge, also explain the observation of the rise in the positron flux as a function of energy.

ALPS at SHiP

- Motivations for **axions** :
 - Particle that can solve the strong CP problem of QCD
- Large spontaneous symmetry breaking scale f_A
 - \rightarrow small couplings

Particularly interesting decays : γγ, μμ

28

- \rightarrow small mass m_A proportional to 1/f_A
- Wide range of (pseudo-)scalar particles with similar features to axions but different masses (called axion-like particles or ALPS)
 - needed in string theory
 - can mediate to DM

m_A [GeV]

combination

SUSY at SHiP : s-goldstinos (1)

- SUSY breaking may be accompanied by s-goldstinos (pseudo-scalar P,scalar S) with couplings ~1/(SUSY breaking scale) → could have escaped detection !
- S-goldstinos are R-even, hence they may be **directly produced**. The production is dominated by gluon fusion.
- They can also be **indirectly produced** through meson decays

$$pp \to S(\text{gluon fusion}), \ S \xrightarrow{\text{long lived}} \ell^+ \ell^-, \pi^+ \pi^-, \pi^0 \pi^0$$

 $pp \to D + X \to S + X', \ S \xrightarrow{\text{long lived}} \ell^+ \ell^-, \pi^+ \pi^-, \pi^0 \pi^0$

SUSY at SHiP : neutralinos (2)

R-parity violating light neutralinos

Stable neutralinos LSPs excluded in mass range [0.7eV,24GeV], as it would give too • much dark matter \rightarrow mass range still allowed if neutralino decays (R-parity violation)

Figure 6.1: Relevant Feynman Diagrams for $D^+ \to \widetilde{N}_1^0 + \ell^+$.

SHiP can probe sfermions in the region of a few 10s of TeV.

SUSY at SHiP : axinos (3)

- In a supersymmetric version of axion models, the axion A has as fermionic partner the **axino**.
- The most direct constraints typically arise from the search for the axion itself. But if the axino is light, then it is interesting to search for it directly.
- If **R-parity is broken**, a **single axino** is produced together with a neutrino: $\langle \tilde{\nu}_i \rangle \sim \nu$ The axion LSP can decay to γ and γ

The axion LSP can decay to γ and ν dominantly. In models with DSFZ-type interaction, they **can decay into llv** with a similar decay rate.

• If **R-parity is conserved**: pair production of SUSY particles

Mono-γ or two-lepton final state

Figure 6.8: Neutralino to axino decay channels.

F4,F5

charged current events. With the usual DIS variables: $x \equiv Q^2/2 p \cdot q$ and $y \equiv p \cdot q/p \cdot k$, where the momentum assignments are:

$$\nu_{\tau}/\bar{\nu}_{\tau}(k) + N \quad \rightarrow \quad \tau^{-}/\tau^{+}(k') + X \tag{7.1.2}$$

$$q^2 \equiv (k - k')^2 = -Q^2,$$
 (7.1.3)

the tau neutrino and anti-neutrino charged current cross sections in terms of the structure functions $F_1, ..., F_5$ are [944]:

$$\begin{split} \frac{d^2 \sigma^{\nu(\bar{\nu})}}{dx \ dy} &= \frac{G_F^2 M E_{\nu}}{\pi (1+Q^2/M_W^2)^2} \Biggl((y^2 x + \frac{m_\tau^2 y}{2E_{\nu}M}) F_1 + \left[(1 - \frac{m_\tau^2}{4E_{\nu}^2}) - (1 + \frac{Mx}{2E_{\nu}}) y \right] F_2 \\ &\pm \left[xy(1 - \frac{y}{2}) - \frac{m_\tau^2 y}{4E_{\nu}M} \right] F_3 + \frac{m_\tau^2 (m_\tau^2 + Q^2)}{4E_{\nu}^2 M^2 x} F_4 - \frac{m_\tau^2}{E_{\nu}M} F_5 \Biggr), \end{split}$$

where $+F_2$ applies to neutrino scattering and $-F_2$ to antineutrinos. M and m_{τ} are the nucleon and τ lepton masses respectively, E_{ν} is the initial neutrino energy and G_F is the Fermi constant. As we will see, at the lower ν_{τ} energies the SHiP experiment offers the first opportunity to measure the structure functions F_4 and F_5 . At the Born level, neglecting target mass corrections, the Albright-Jarlskog relations apply [944]

$$F_4 = 0, (7.1.4)$$

$$F_5 = \frac{F_2}{2x} \,. \tag{7.1.5}$$

The QCD predictions for the DIS structure functions F_4 and F_5 are known up to NLO accuracy [945], including full dependence on heavy-quark masses, though. The detailed relationships between the five structure functions, including NLO QCD together with target mass and charm quark mass corrections, are discussed, for example, in Refs. [945–948].

Backgrounds

• Discriminate residual background: with/out misidentification, $X = X^{\pm}$, X^{0} , X

- Inelastic scattering: ν or $\mu + N \rightarrow X + K_L \rightarrow \pi \mu \nu$, $\pi e \nu$, $\pi^+ \pi^-$, $\pi^+ \pi^- \pi^0$
 - $\begin{array}{c} \rightarrow X + K_S \rightarrow \pi^0 \pi^0, \ \pi^+ \pi^- \\ \rightarrow X + n \rightarrow p e^- \overline{\nu}_e \qquad \rightarrow X + \Lambda \rightarrow p \pi^- \\ n + N \rightarrow X + K_L \dots \end{array}$
- Muon combinatorial

Tracking + particle identification !