

Recent Heavy Flavor results from the Tevatron

- B⁺,B⁻ asymmetries
- Forward-backward asymmetry of $(\Lambda_b, \overline{\Lambda_b})$
- Indirect CP-violating asymmetries in $D^0 \longrightarrow K^+K^-$ and $D^0 \longrightarrow \pi^+\pi^-$

• $\frac{\sigma(B_c^+) * BR(B_c^+ \to J/\psi\mu^+\nu)}{\sigma(B^+) * BR(B^+ \to J/\psi K^+)}$

Brad Abbott University of Oklahoma For the CDF and D0 collaborations

> 27th Rencontres de Blois May 31-June 05,2015

B⁺,B⁻ asymmetries

- Recently there has been interest in forward-backward asymmetry in tt production since initial results were larger than SM prediction
- Forward-backward asymmetry in bb has same sources as forward-backward asymmetry in tt
- Full reconstruction of B[±] has advantage that b quark charge known and no need to account for B^0/\overline{B}^0 oscillation
- Forward-backward asymmetry in B⁺, B⁻ sensitive to same production asymmetries as bb.

Forward B⁻: Longitudinal momentum in p direction Backward B⁻: Longitudinal momentum in \overline{p} direction

Forward B⁺: Longitudinal momentum in p direction Backward B⁺: Longitudinal momentum in p direction b quark content $\rightarrow p$ b quark content $\rightarrow p$

 $A_{FB} \equiv A \equiv \frac{N_F - N_B}{N_F + N_B}$

Fitting

$< P_T > for B^{\pm}: 12.9 \text{ GeV}$

$B^{\pm} \longrightarrow J/\psi \ K^{\pm} \ with \ J/\psi \rightarrow \mu^{+}\mu^{-}$

Events selected using both cuts and a BDT

Unbinned maximum likelihood fit includes double Gaussian function for signal.

Backgrounds are described by B $\rightarrow J/\psi \pi^{\pm}$, where pion is assigned kaon mass, partially reconstructed B_x $\rightarrow J/\psi h^{\pm} X$ and combinatoric background

Forward + Backward events

Results are presented for 0.1 < |n| < 2.0

(Events near η =0 removed to remove any potential ambiguity of sign of η due to resolution)

Results

Source	Uncertainty
Statistical	0.41%
Alternative BDTs and cuts	0.17%
Fit variations	0.06%
Reconstruction asymmetries	0.05%
Fit bias	0.02%
Systematic uncertainty	0.19%
Total uncertainty	0.45%

 $A_{FB}(B^{\pm}) = -0.0024 \pm 0.0041(stat) \pm 0.0019(sys)$

We observe no significant forward-backward asymmetry

First measurement of this quantity

Comparison of $A_{FB}(B^{\pm})$ to MC@NLO

Data systematically lower than MC@NLO at all η for P_T=9-30 GeV

Some tension with data and MC@NLO

Comparison to new calculation*

Better Agreement

* C. Murphy ArXiv:1504.02493

Forward-backward asymmetry of $(\Lambda_b, \overline{\Lambda}_b)$

- Forward Λ_b : longitudinal momentum in p direction
- Backward Λ_b : longitudinal momentum in \overline{p} direction
- Forward $\overline{\Lambda}_{b}$: longitudinal momentum in \overline{p} direction
- Backward $\bar{\Lambda}_{b}$: longitudinal momentum in p direction

$$A_{FB} \equiv A \equiv \frac{N_F - N_B}{N_F + N_B}$$

Recently "string drag" mechanism proposed by J. Rosner may favor production of $\Lambda_{\rm b}$ baryons in proton beam direction and $\bar{\Lambda}_{\rm b}$ baryons in antiproton beam direction

arXiv:1503.03917 Phys. Rev. D 91 072008

Reconstructing $\Lambda_{\rm b}$

- Search for $\Lambda_b \longrightarrow J/\psi \Lambda$, $J/\psi \longrightarrow \mu^+\mu^-$, $\Lambda \longrightarrow p\pi^-$
- Cut based analysis
- Λ_b candidates fit using a binned maximum likelihood Gaussian signal and second order Chebyshev polynomial background
- Simulation: Pythia with CTEQ6L1 PDF or MC@NLO with CTEQ6M1 PDF with Herwig showering and hadronization and Evtgen for b hadron decay.
- Asymmetry measured in 4 rapidity bins

Heavy Quark drag model fits observation

Ratio of $\overline{\Lambda}_{\rm h}/\Lambda_{\rm h}$ vs rapidity loss y(beam)-y($\Lambda_{\rm b}$)

 A_{FB} for Λ

A_{FB}=0.0115 ± 0.0005(stat) ± 0.0006(sys) D0 preliminary

Small but significant asymmetry

 $\overline{\Lambda}/\Lambda$ production ratio vs rapidity loss

Indirect CP-violating asymmetries in $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ at CDF

- Decay time dependent asymmetries in CP eigenstates provide a very powerful probe for CP violation.
- Asymmetries probe non-SM contributions in the oscillation and penguin transition amplitudes since non SM particles can be exchanged causing an enhancement relative to the SM expectations.
- Previous measurements are consistent with CP symmetry at O(10⁻³) uncertainties.
- Independent measurement with similar precision helps constrain charm sector
- D→h⁺h⁻ decays can be fully reconstructed, allowing precise decay time determination. Large signal yields and moderate backgrounds allow for a precise measurement

Measurement

$$A_{CP}(t) = \frac{d\Gamma(D^0 \to h^+ h^-) / dt - d\Gamma(\overline{D}^0 \to h^+ h^-) / dt}{d\Gamma(D^0 \to h^+ h^-) / dt + d\Gamma(\overline{D}^0 \to h^+ h^-) / dt}$$

Due to slow oscillation rate of charm mesons, A_{CP} can be approximated as

Trigger bias assumed to be independent of D⁰ flavor and is accounted for when determining <t>

Relative signal and background yields in signal region found for each decay time bin

Impact Parameter

Subtract impact parameter distribution of background found using sideband data

Consistent with CP symmetry

PRD-RC 90, 111103 (2014)

Consistent with current best results and has competitive precision

Track== π^+ , K⁺ or p for mis ID muon background

 $\frac{\sigma(B_c^+) * BR(B_c^+ \to J/\psi\mu^+\nu)}{\sigma(B^+) * BR(B^+ \to J/\psi K^+)} = \frac{N_{B_c^+}}{N_{B_c^+}} \times \varepsilon_{rel}$

Results

Conclusions

- D0 observes no significant forward-backward asymmetry for B[±].
 Some tension with MC@NLO
- D0 has measured the $\overline{\Lambda}_{\rm b}/\Lambda_{\rm b}$ production ratio and finds it is consistent with a universal function of rapidity loss
- Indirect CP-violating asymmetries in D⁰ \rightarrow K⁺K⁻ and D⁰ $\rightarrow \pi^{+}\pi^{-}$ at CDF found to be consistent with CP symmetry A_{\Gamma}=(-1.2 ± 1.2) x 10⁻³

• CDF measures
$$\frac{\sigma(B_c^+) * BR(B_c^+ \to J/\psi \mu^+ \nu)}{\sigma(B^+) * BR(B^+ \to J/\psi K^+)} = 0.211 \pm 0.012 (\text{stat})_{-0.020}^{+0.021} (\text{sys})$$

Backup

B[±] reconstruction

- $B^{\pm} \longrightarrow J/\psi \ K^{\pm} \ with \ J/\psi \longrightarrow \mu^{+}\mu^{-}$
- Candidate events first found with cut based analysis based on track P_T, transverse decay length, M(μ⁺μ⁻), quality of three track vertex and pointing angle¹.
- Background rejection is improved with a BDT which includes kinematic variables such as, particle momenta, distances from pp vertex, decay lengths, pointing angles, isolation of muons and B[±], and azimuthal angle separation for various particle pairs
- Simulation: MC@NLO with CTEQ6M1 PDF and Herwig for parton showering and hadronization

¹ the angle between a particle's momentum vector and the vertex from the ppbar vertex to the particle's decay vertex, with vectors defined in the x-y plane

Asymmetry

- Hadroproduction of particles containing heavy quark Q proceeds through qq
 annihilations or g-g fusion followed by hadronization to the heavy quarks
- At NLO, QCD effects can introduce a small asymmetry (~1%) in Q and $\bar{Q}\,$ momenta
- Hadronization may also change direction of particle containing Q so can generate significant asymmetry
- Few studies of asymmetries of bottom baryons
- Recently "string drag" mechanism proposed by J. Rosner may favor production of $\Lambda_{\rm b}$ baryons in proton beam direction and $\overline{\Lambda}_{\rm b}$ baryons in anti-proton beam direction

Yields

Signal region

 \mathbf{V}

	3-4 GeV/c 2	4-6 GeV/c 2	6-10 GeV/c 2
B_c^+ candidates	132±11.5	1370±37.0	208±14.4
Misidentified J/ψ	11.5±2.4	96.5±6.9	25.0±3.5
Misidentified Muon	86.7	344.4	32.1
Double Fake	-5.1	-19.0	-5.2
$b\overline{b}$ Background	12.4±2.4	178.6±12.4	110.4±10.7
Other decay modes	2.6±0.1	30.0±0.2	0
Total background	108.1 ± 3.4	630.5 ± 14.2	162.3 ± 11.3
B_c^+ Excess	23.9±12.0	739.5±39.6	45.7±18.3
B_c^+ Monte Carlo,	22.6±0.6	739.5±3.7	27.6±0.6
(scaled to signal region)			

Backgrounds for B_c⁺

- Mis ID J/ ψ
 - Determined from J/ ψ sidebands
- Mis ID third muon
 - Calculate probability that a muon is mis –ID based on probability for π , K or p to fake a muon
- bb background
 - J/ ψ from one b hadron and a third muon from other \bar{b} hadron
- % μ Misid. Prob., 0.8 0 1 0 ے 10 6 8 9 Hadron p_T (GeV/c) CDF Run II Preliminary: 8.7 fb 800 J/ψµ⁺ pairs ⁰⁰⁷ م Data N(J/γμ,⁺) pairs per 5 00 000 000 000 000 00 000 000 000 ---- Fit Result • FC GS ²/ndf: 39.6/34 20 40 60 80 100 120 140 160 180 $\Delta \phi(J/\psi \mu^{\dagger})$ (degrees)

25

CDF Run II Preliminary: 8.7 fb

Other decay modes