Double Higgs boson production in the Standard Model with extra scalar particles 1408.0184, 1503.01618

S. I. Godunov, M. I. Vysotsky, A. N. Rozanov, E. V. Zhemchugov

> 27th Rencontres de Blois Particle Physics and Cosmology

May 31–June 5, Blois, France

Motivation

- A scalar with mass 125 GeV has been discovered in 2012.
- In order to confirm that this is the Standard Model Higgs boson, its couplings have to be measured.
- ▶ Triple coupling: $g_{hhh} \sim \frac{m_h^2}{v}$. It can be measured in the $pp \rightarrow hh$ process.
- ▶ Standard Model prediction for the $pp \rightarrow hh$ cross section is 40 fb for $\sqrt{s} = 14$ TeV. That can only be measured at HL-LHC.
- What if there are other scalar particles?

Isosinglet

arXiv:1503.01618

Scalar sector:

$$\Phi = \begin{pmatrix} \phi^+ \\ \frac{1}{\sqrt{2}}(v_{\Phi} + \phi + i\eta) \end{pmatrix}, \ X = v_X + \chi$$

Potential:

$$V_1(\Phi, X) = -\frac{1}{2}m_{\Phi}^2 \Phi^{\dagger} \Phi + \frac{\lambda}{2}(\Phi^{\dagger} \Phi)^2 + \frac{1}{2}m_X^2 X^2 + \mu \Phi^{\dagger} \Phi X$$

Mixing:

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix}.$$

Scalar sector:

$$\Phi = \begin{pmatrix} \phi^+ \\ \frac{1}{\sqrt{2}}(\mathbf{v}_{\Phi} + \phi + i\eta) \end{pmatrix}, \ X = \mathbf{v}_{\mathbf{X}} + \chi$$

Potential:

$$V_1(\Phi, X) = -\frac{1}{2}m_{\Phi}^2 \Phi^{\dagger} \Phi + \frac{\lambda}{2}(\Phi^{\dagger} \Phi)^2 + \frac{1}{2}m_X^2 X^2 + \mu \Phi^{\dagger} \Phi X$$

Mixing:

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix}.$$

1.
$$\frac{\partial V_1}{\partial \phi}\Big|_{\phi=0, \chi=0} = 0$$
,
2. $\frac{\partial V_1}{\partial \chi}\Big|_{\phi=0, \chi=0} = 0$,

3. $v_{\Phi}=246~{\rm GeV}$ from the Fermi coupling in muon decay.

4. *h* is associated with the SM-like higgs, so $m_h = 125$ GeV. Remaining model parameters: $\sin \alpha$ and m_H .

H decay widths:

$$\begin{split} \Gamma(H \to W^+ W^-) &= \frac{m_H^3 \sin^2 \alpha}{16 \pi v_\Phi^2} \left[1 - 4 \frac{m_W^2}{m_H^2} + 12 \frac{m_W^4}{m_H^4} \right] \sqrt{1 - \left(\frac{2m_W}{m_H}\right)^2} \\ \Gamma(H \to ZZ) &= \frac{m_H^3 \sin^2 \alpha}{128 \pi v_\Phi^2} \left[1 - 4 \frac{m_Z^2}{m_H^2} + 12 \frac{m_Z^4}{m_H^4} \right] \sqrt{1 - \left(\frac{2m_Z}{m_H}\right)^2} \\ \Gamma(H \to t\bar{t}) &= \frac{3m_t^2 m_H \sin^2 \alpha}{8 \pi v_\Phi^2} \left[1 - \left(\frac{2m_t}{m_H}\right)^2 \right]^{\frac{3}{2}} \\ \Gamma(H \to hh) &= \frac{(2m_h^2 + m_H^2)^2}{32 \pi v_\Phi^2 m_H} \sin^2 \alpha \cos^4 \alpha \sqrt{1 - \left(\frac{2m_h}{m_H}\right)^2} \end{split}$$

h double production cross section:

$$\sigma(pp \to H \to hh) = \sigma(pp \to h)_{\mathsf{SM}} \cdot \sin^2 \alpha \cdot \operatorname{Br}(H \to hh)$$

$$\mu_i = \frac{\sigma(pp \to h) \cdot \operatorname{Br}(h \to f_i)}{(\sigma(pp \to h) \cdot \operatorname{Br}(h \to f_i))_{\mathsf{SM}}} = \cos^2 \alpha$$

ATLAS: $\mu = 1.30^{+0.18}_{-0.17}$, CMS: $\mu = 1.00^{+0.14}_{-0.13}$

Bounds from electroweak precision observables and μ measurements:

Experiment: R < 0.1 for 200 GeV $Mm_H < 400$ GeV (CMS PAS HIG-13-002).

Isotriplet

J. Exp. Theor. Phys. 120 (2015) 3, 369–375 arXiv:1408.0184

Scalar sector:

$$\Phi = \begin{bmatrix} \phi^+ \\ \frac{1}{\sqrt{2}}(v_{\Phi} + \phi + i\eta) \end{bmatrix}, \ \Delta = \frac{\vec{\Delta}\vec{\sigma}}{\sqrt{2}} = \begin{bmatrix} \delta^+/\sqrt{2} & \delta^{++} \\ \frac{1}{\sqrt{2}}(v_{\Delta} + \delta + i\rho) & -\delta^+/\sqrt{2} \end{bmatrix}$$

Potential:

$$\begin{split} V\!(\Phi,\Delta) &= -\frac{1}{2} m_{\Phi}^2 (\Phi^{\dagger} \Phi) + \frac{\lambda}{2} (\Phi^{\dagger} \Phi)^2 \\ &+ m_{\Delta}^2 \operatorname{tr}[\Delta^{\dagger} \Delta] + \frac{\mu}{\sqrt{2}} (\Phi^T i \sigma^2 \Delta^{\dagger} \Phi + \mathsf{h.c.}) \end{split}$$

Mixing:

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi \\ \delta \end{pmatrix}.$$

 $m_h = 125$ GeV.

Custodial symmetry breaking:

$$\begin{split} m_W^2 &= \frac{g^2}{4} (v_{\Phi}^2 + 2v_{\Delta}^2) \\ m_Z^2 &= \frac{\bar{g}^2}{4} (v_{\Phi}^2 + 4v_{\Delta}^2) \\ \end{split} \Rightarrow \frac{m_W}{m_Z} \approx \left(\frac{m_W}{m_Z} \right)_{\text{SM}} \left(1 - \frac{v_{\Delta}^2}{v_{\Phi}^2} \right) \\ \frac{m_W}{m_Z \cos \theta_W} \\ \end{pmatrix}_{\text{SM}} = 1.00040 \pm 0.00024 \Rightarrow v_{\Delta} < 5 \text{ GeV (at } 3\sigma \text{ level}) \end{split}$$

In the following we assume $v_{\Delta} = 5$ GeV.

$$v_{\Phi}^2 + 2v_{\Delta}^2 = \frac{1}{\sqrt{2}G_F} = (246 \text{ GeV})^2 \Rightarrow v_{\Phi} \approx 246 \text{ GeV}.$$

With $v_{\Delta} \ll v_{\Phi}$ we get $\sin \alpha \approx \frac{2v_{\Delta}}{v_{\Phi}} \ll 1$. Remaining model parameters: m_H . We will consider the case of $m_H = 300$ GeV.

$$\begin{split} \Gamma(H \to ZZ) &= \frac{v_{\Delta}^2}{v^4} \frac{m_H^3}{8\pi} \left[\frac{1 - 2\left(\frac{m_h}{m_H}\right)^2}{1 - \left(\frac{m_h}{m_H}\right)^2} \right]^2 \left(1 - 4\frac{m_Z^2}{m_H^2} + 12\frac{m_Z^4}{m_H^4} \right) \sqrt{1 - \left(\frac{2m_Z}{m_H}\right)^2} \\ \Gamma(H \to WW) &= \frac{v_{\Delta}^2}{v^4} \frac{m_H^3}{4\pi} \left[\frac{\left(\frac{m_h}{m_H}\right)^2}{1 - \left(\frac{m_h}{m_H}\right)^2} \right]^2 \left(1 - 4\frac{m_W^2}{m_H^2} + 12\frac{m_W^4}{m_H^4} \right) \sqrt{1 - \left(\frac{2m_W}{m_H}\right)^2} \\ \Gamma(H \to t\bar{t}) &= \frac{v_{\Delta}^2}{v^4} \frac{3m_t^2 m_H}{2\pi} \left[\frac{1}{1 - \left(\frac{m_h}{m_H}\right)^2} \right]^2 \left(1 - \left(\frac{2m_t}{m_H}\right)^2 \right)^{\frac{3}{2}} \\ \Gamma(H \to hh) &= \frac{v_{\Delta}^2}{v^4} \frac{m_H^3}{8\pi} \left[\frac{1 + 2\left(\frac{m_h}{m_H}\right)^2}{1 - \left(\frac{m_h}{m_H}\right)^2} \right]^2 \sqrt{1 - \left(\frac{2m_h}{m_H}\right)^2} \end{split}$$

 $H \to WW$ decay is suppressed, $H \to ZZ$ is the "golden mode". Br $(H \to hh) \approx 0.8$ for $m_H = 300$ GeV. Heavy higgs production at the LHC:

Higgs boson double production cross section at the LHC for $\sqrt{s} = 14$ TeV

	the SM h		Н
Mass, GeV	125	300	300
$\sigma(gg ightarrow h, H)$, 1 pb	50(5)	11(1)	$25(2) \cdot 10^{-3}$
$\sigma(gg ightarrow tar{t} + h, H)$, ¹ pb	0.61(6)	0.051(5)	$12(1) \cdot 10^{-6}$
$\sigma(W^{+}W^{-} \rightarrow h, H)$, ² pb	3.272(4)	1.053(1)	$76.8(1) \cdot 10^{-6}$
$\sigma(Z\!Z ightarrow h,H)$,² pb	1.087(1)	0.365(1)	$365(1) \cdot 10^{-6}$
$\sigma(\mathit{W^*} \rightarrow \mathit{Wh}, \mathit{WH})$, ² pb	0.150(6)	0.068(3)	$5.0(2) \cdot 10^{-6}$
$\sigma(Z \rightarrow Zh, ZH)$, ² pb	0.88(5)	0.042(2)	$42(2) \cdot 10^{-6}$

 $\begin{aligned} \sigma(pp \to hh) &= 40 \text{ fb (SM)} + 25 \text{ fb (}H \text{ production)} \cdot 0.8 \text{ (branching)} \\ &= 60 \text{ fb} \end{aligned}$

¹For the SM higgs values are from *Handbook of LHC Higgs cross sections*, CERN-2011-002

 $^2\mbox{Obtained}$ with the help of the program HAWK at LO + QCD without electroweak corrections

The Georgi-Machacek model

$$\begin{split} \Phi &= \begin{bmatrix} \phi^{0*} & \phi^+ \\ -\phi^- & \phi^0 \end{bmatrix}, \quad \Delta = \begin{bmatrix} \delta^{0*} & \xi^+ & \delta^{++} \\ -\delta^- & \xi^0 & \delta^+ \\ \delta^{--} & -\xi^- & \delta^0 \end{bmatrix}, \\ \phi^0 &= \frac{1}{\sqrt{2}} (v_{\Phi} + \phi + i\chi), \quad \delta^0 &= \frac{1}{\sqrt{2}} (v_{\Delta} + \delta + i\eta), \\ \xi^0 &= v_{\xi} + \xi, \\ m_W^2 &= \frac{g^2}{4} (v_{\Phi}^2 + 2v_{\Delta}^2 + 2v_{\xi}^2) \\ m_Z^2 &= \frac{\bar{g}^2}{4} (v_{\Phi}^2 + 4v_{\Delta}^2) \\ (v_{\Phi}^2 + 2v_{\Delta}^2 + 2v_{\xi}^2) &= \frac{1}{\sqrt{2}G_F} = (246 \text{ GeV})^2 \end{split}$$

When $v_\xi=v_\Delta$ the bound on v_Δ from the gauge bosons mass ratio is relieved. LHC measurements allowes v_Δ up to 50 GeV. In this case H production cross section can be as high as 2 pb depending on model parameters.

Thank you for your attention