

Probing the nonthermal dark matter at hadron colliders with the events containing a single top quark in the final state

27th Rencontres de Blois

Mykhailo Dalchenko

Physics motivation

Nonthermal scenario

 $\mathcal{L}_{int} = \lambda_1^{\alpha,\rho\delta} \epsilon^{ij} A X_{ea,s} \overline{l}_{\rho,y} P_{X-d}_{\delta,a} e^{i\rho} A \delta_{\alpha} \delta_{\alpha}$

At the the theorem of theorem of the theorem of theo

 ${\it M}$ isn't protected by parity, therefore $|m_{DM} - m_p| < m_e$

 $\lambda_2 \sim 0.1 \qquad m_X \sim \text{TeV}$

 $\underline{\mathcal{M}}_{DM} \xrightarrow{m_{DM}}_{\mathcal{M}} \xrightarrow{m_{DM}$

 ${\it v}$ diffèrent Nalvor indiversof $\lambda {
m TeV}$

Moreomore mases m_e

Need simplification for collider searches

A minimal parametrization

Assume flavor-blind coupling structure:

Complex phases are dropped

They only appear in interference at loop level

- If there's no mass degeneracy then s-channels dominate
- \checkmark Interference is negligible if $|\lambda_1| \sim |\lambda_2|$ or $|\lambda_1| \gg |\lambda_2|$

Different topologies

Possible final states:

 $s, \$ whigh METe,+µb,+jet + lepton s of High MET + b-jet + 2 other (preferably light) jets Naive sensitivity estimation gives ~1event/fb for 50% efficiency

and $\lambda_1 \approx \lambda_2 \sim 0.1, \ m_X \sim 1 TeV$

Events generation and detector simulation

✓ Generate parton level events with Madgraph 5 v1.5

- Madronize events with Pythia 8.2
- Simulate the detector with Delphes 3.2:

 - Reconstruct jets with FastJet package using anti-Kt
 - \mathbf{V} B-tagging efficiency ~70(60)% in the barrel(endcaps)
 - \blacksquare Apply $p_T(b) > 60 \ GeV$ and $p_T(jet) > 20 \ GeV$ selection

for jets in hadronic final state

If Apply $p_T(b) > 30 \ GeV$ and $p_T(\ell) > 30 \ GeV$ selection in leptonic final state

We have quite promising model with well recognizable final state, but how can we distinguish it from other similar models?

An example of similar model

Let's use isospin doublet instead of isospin singlet $\mathcal{L}_{\mathrm{D}} \supset y_{1}^{\alpha,i} \bar{Q}_{i} n X_{\alpha} + y_{2}^{\alpha,i} X_{\alpha}^{\dagger} \bar{Y} d_{i} + y_{3}^{\alpha,i} X_{\alpha} \bar{Y} u_{i}^{c} + \mathrm{C.C.}$

u y_1 n u y_1 y_1 y_1 u y_1 y_1 u n

 $u + g \rightarrow X + n_{DM} \rightarrow t + n_{DM} + n_{DM}$

The reconstructable final state is the same as in case of isospin singlet model

However, top quark chirality from X decay is opposite between the singlet and doublet cases.

FastSim with Delphes Hadronic top quark decay

Flip the chirality and analyze the pT spectrum

There's a visible discrimination!

FastSim with Delphes Leptonic top quark decay

Flip the chirality and analyze the pT spectrum

Going further

Another model with similar final state: simplified model with scalar resonance plus heavy dark matter candidate

- Ic Light non-thermal DM model is well motivated Good sensitivity with LHC Run II data is expected
- Top quark chirality reconstruction allows to distinguish between different NP models with single top quark in the final state
- Works for both hadronic and leptonic decay modes of the top quark
- Allows search for the anomalous weak couplings in SM events with single top quark in the final state