

Measurements of CP violation and mixing in Charm decays at LHCb

Olli Lupton on behalf of the LHCb collaboration

XXVIIth Rencontres de Blois

MINA TIO

ILIV

Overview

- LHCb detector
- Direct *CP* violation:
 Model-independent: D⁰ → π⁺π⁻π⁰
 Model-dependent: D⁰ → K⁰_SK[±]π[∓] (NEW)
 Indirect / time-dependent *CPV*:
 -A_Γ with D⁰ → π⁺π⁻ and D⁰ → K⁺K⁻

Summary

Just a selection of recent LHCb results, many already published and lots more to come!

LHCb detector

Vertex locator

20 μm IP resolution for high p_T tracks

6D

Ring-imaging Cherenkov detectors

Excellent π/K separation

Calorimeters

 π^0 reconstruction!

LHCb is a Charm factory

 $\sigma(c\bar{c})_{p_{\rm T}<8\,{\rm GeV}/c,\,2.0< y<4.5} = 1419 \pm 12\,({\rm stat}) \pm 116\,({\rm syst}) \pm 65\,({\rm frag})\,\mu{\rm b}$

[Nuclear Physics, Section B 871 (2013), pp. 1-20]

(at 7 TeV)

O(5 x 10¹²) $c\overline{c}$ pairs produced during 2011-12 in LHCb!

Huge statistics: LHCb has world-leading sensitivity to many Charm CPV observables

Large beam energy means D mesons are highly-boosted; excellent for time-dependent studies. Much better decay time resolution than the B-factories!

CP violation in Charm

- Standard Model predictions are small; large *CP* violation would be a strong hint of New Physics
- Complementary to energy-frontier searches
- CP violation searches clearly want to tag D⁰ flavour; at LHCb we do this with D*(2010)+ or
 semileptonic B meson decays

Direct CP violation *I.E.* $|D^{\circ} \rightarrow F|^{2} := |\overline{D}^{\circ} \rightarrow \overline{F}|^{2}$

- Today: time-integrated measurements looking for local asymmetries in multibody D⁰ decays
- Interesting places to search for CPV because of interference effects in the Dalitz plots (difficult though!)
- Singly Cabbibo suppressed (SCS) decays are expected to be the best places to find **direct** CPV
- Several techniques: full-blown amplitude analysis, binned (e.g. "Miranda") techniques, unbinned metrics, tripleproduct asymmetries, ...
- We'll see more about the highlighted ones...

Search uses an unbinned model-independent test statistic

NEW

Amplitude analysis of $D^0 \rightarrow K^0_S K^{\pm} \pi^{\mp}$

Two more SCS D⁰ decays, but a rather different analysis

- More than a CPV search: isobar models (constructed assuming CP) useful for future measurements of mixing, and the CP-violating CKM angle γ
- Other interesting tests come direct from the models.
- Here: remove CP assumption and perform modeldependent CPV search
- World's most precise study; O(10²) higher statistics than previous best by CLEO

LHCb-PAPER-2015-026

VOLUME

NEW

Amplitude analysis of $D^0 \rightarrow K^0_S K^{\pm} \pi^{\mp}$

LHCb-PAPER-2015-026

Model-dependent CPV results

• Once you have an isobar model

Resonance `lineshape'

Resonance amplitude

• Substitute

$$A = \sum_{R} a_{R} (1 \pm \Delta a_{R}) e^{i(\phi_{R} \pm \Delta \phi_{R})} A_{R}$$

 $A = \sum a_R e^{i\phi_R} A_R^{*}$

- With the sign dependent on the D⁰ flavour tag, and re-fit the models
- Perform χ^2 test w.r.t. no-*CPV* hypothesis ($\Delta = 0$)
- Find χ^2 /ndf = 32.3/32 = 1.01, *p*-value 0.45

No evidence for *CP* violation

Indirect *CPV* / mixing *I.E.* $|D^{\circ} \rightarrow \overline{D}^{\circ} \rightarrow F|^{2} := |\overline{D}^{\circ} \rightarrow D^{\circ} \rightarrow F|^{2}$

- Time-dependent CP asymmetries...
- Charm mixing is the only up-type system where we can probe mixing and CPV
- Mixing now well-established (helped by LHCb 2-body results [Phys. Rev. Lett. 110, 101802, Phys. Rev. Lett. 111, 251801, JHEP 1204 (2012) 129]!)...but CPV is not

LHCb A_{Γ} results

- Let's see LHCb's most recent result: full 3 fb⁻¹ using D⁰ tagged with semileptonic B decays
- D⁰ decays to CP eigenstate: K⁺K⁻ or π⁺π⁻, and we measure the time-dependent asymmetry

$$A_{CP}(t) \equiv \frac{\Gamma(D^0 \to f; t) - \Gamma(\overline{D}{}^0 \to f; t)}{\Gamma(D^0 \to f; t) + \Gamma(\overline{D}{}^0 \to f; t)} \approx A_{CP}^{\text{dir}} - A_{\Gamma} \frac{t}{\tau}$$

Straight line fit gives A_Γ, which is sensitive to indirect *CP* violation

J. High Energy Phys. 04 (2015) 043

50 bins in D⁰ decay time, approx. optimised to have equal sensitivity

D⁰ production asymmetry, muon detection asymmetry etc. all contribute to non-zero intercept, but only negligibly to A_{Γ}

$$\begin{aligned} A_{\Gamma}(K^{-}K^{+}) &= (-0.134 \pm 0.077 \ ^{+0.026}_{-0.034})\% \\ A_{\Gamma}(\pi^{-}\pi^{+}) &= (-0.092 \pm 0.145 \ ^{+0.025}_{-0.033})\% \\ \text{(statistically limited)} \end{aligned}$$

There is also a previous LHCb result \vec{P}_{-5} $\vec{P$

J. High Energy Phys. 04 (2015) 043

Summary

- Lots of activity in LHCb searching for CPV in Charm
- Many different methods; have presented a selection with recent results.
- Complementary measurements from semi-leptonic B meson decays and promptly produced Charm
- Lots more Run 1 results to come soon: 3 fb⁻¹ prompt A_Γ, mixing with $D^0 \rightarrow K^0_S \pi^+ \pi^-$, ...
- ...and Run 2 of the LHC is just starting, with even higher charm production cross sections at 13 TeV
- Huge data samples; exciting opportunities!

Thanks

- MAR

Backup

Phys. Lett. B 740 (2015) 158 J. Stat. Comput. Simul. 75 (2005) 109 Nucl. Instrum. Meth. A537 (2005) 626 Phys. Rev. D84 (2011) 054015

The energy test $d_{ij}^2 = \left| (\Delta m_{\pi^*\pi^-}^2, \Delta m_{\pi^0\pi^-}^2, \Delta m_{\pi^*\pi^0}^2) \right|^2$ $\psi_{ij} \equiv \psi(d_{ij}) = e^{-d_{ij}^2/2\sigma^2}$

• Unbinned test statistic:

Mean metric-weighted distances between candidates in the Dalitz plot.

Sensitivity studies

Table 1: Overview of sensitivities to various CP violation scenarios. ΔA and $\Delta \phi$ denote, respectively, change in amplitude and phase of the resonance R.

$R \; (\Delta A, \Delta \phi)$	p-value (fit)	Upper limit
$ ho^0 (4\%, 0^\circ)$	$3.3^{+1.1}_{-3.3} \times 10^{-4}$	4.6×10^{-4}
$ ho^0~(0\%,3^\circ)$	$1.5^{+1.7}_{-1.4} \times 10^{-3}$	3.8×10^{-3}
$ ho^+~(2\%,0^\circ)$	$5.0^{+8.8}_{-3.8} \times 10^{-6}$	1.8×10^{-5}
$ ho^+~(0\%,1^\circ)$	$6.3^{+5.5}_{-3.3} \times 10^{-4}$	1.4×10^{-3}
$ ho^-~(2\%,0^\circ)$	$2.0^{+1.3}_{-0.9} \times 10^{-3}$	3.9×10^{-3}
$ ho^-~(0\%,1.5^\circ)$	$8.9^{+22}_{-6.7} \times 10^{-7}$	4.2×10^{-6}

1° CP violation in the $\rho^{\scriptscriptstyle +}$ phase

2% amplitude CP violation for the $\rho^{\scriptscriptstyle +}$

Sensitivity study for the energy test method

Cross-check for local asymmetries in the Cabbibo-favoured control mode

This confirms that there is no indication of local asymmetries in these samples.

Figure 6: Distribution of *p*-values for the eight subsamples of the control channel $D^0 \to K^- \pi^+ \pi^0$. The dashed line indicates the expected distribution.

Other projections for $D^0 \rightarrow K^0_S K^- \pi^+$

Other projections for $D^0 \rightarrow K^0_S K^+ \pi^-$

Alternative model for $D^0 wohearrow K^0_S K^- \pi^+$

Alternative model for $D^0 \rightarrow K^0_S K^+ \pi^-$

A_{Γ} formalism

where $A_{CP}^{\text{mix}} = |q/p|^2 - 1$ describes CP violation in $D^0 - \overline{D}^0$ mixing, with q and p the coefficients of the transformation from the flavour basis to the mass basis, $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$. The weak phase ϕ describes CP violation in the interference between mixing and decay, and is specific to the decay mode. Finally, A_{Γ} receives a contribution from direct CP violation as well [16].

A_{Γ} systematic uncertainties

Table 1: Contributions to the systematic uncertainty of $A_{\Gamma}(K^-K^+)$ and $A_{\Gamma}(\pi^-\pi^+)$. The constant and multiplicative scale uncertainties are given separately.

Source of uncertainty	$D^0 \rightarrow K^- K^+$		$D^0 \rightarrow \pi^- \pi^+$	
	constant	scale	constant	scale
Mistag probability	0.006%	0.05	0.008%	0.05
Mistag asymmetry	0.016%		0.016%	
Time-dependent efficiency	0.010%		0.010%	
Detection and production asymmetries	0.010%		0.010%	
D^0 mass fit model	0.011%		0.007%	
D^0 decay-time resolution		0.09		0.07
$B^0 - \overline{B}{}^0$ mixing	0.007%		0.007%	
Quadratic sum	0.026%	0.10	0.025%	0.09