

Constraints on Supersymmetry after Run 1 ALTAS Searches

Anyes Taffard University of California Irvine

On behalf of the ATLAS Collaboration

27th Rencontres de Bloís Chateau Royal De Bloís May 31 - June 05, 2015

SUperSYmmetry (SUSY) in a Nutshell

One of the most popular extensions of the Standard Model (SM)

- ✓ SUSY postulates "superpartners" to each SM particles
- ✓ Higgs sector extended to 5 Higgs
- ✓ Charginos: mixture of Wino/charged Higgsinos
- ✓ Neutralinos: mixture of Bino/Wino/neutral Higgsinos

Why is SUSY popular ? It answers many open questions at once:

- \checkmark Provides a solution to the hierarchy problem
 - The fermion/boson contributions to the Higgs mass cancel
- ✓ Allows unification of gauge couplings
- ✓ Offers a dark matter (DM) candidate (if R-parity is conserved)

The SUSY experimental challenge:

- ✓ SUSY is very predictive in terms of spins and couplings, but tells us nothing about the masses <u>after symmetry breaking</u>
- ✓ Results: >100 free parameters !
 - All possible mass hierarchies between SUSY particles: 9! models
- ✓ Unknown mass hierarchy determines decay chain and (possibly long) lifetimes

Complete SUSY Models

• mSUGRA, AMSB, GMSB

Phenomenological Models:

- pMSSM (19 parameters), GGM (gravitino)
 <u>Simplified Models</u>
- Physical masses of SUSY particles
- Fixed decay chain & branching fractions

Anyes Taffard

 27^{th} Rencontres De Blois

June 2^{nd} 2015

2

Guidance from naturalness

- ✓ Because of sparticles contribution to the Higgs mass, can approximate their upper limits from the requirement of "small" (<10%) fine-tuning of the Higgs mass :</p>
 - Gluino ~ few TeV
 - Stop ~ 1TeV (lowest mass squark)
 - Higgsino ~200-300 GeV

In this talk, will focus on:

R-Partity violation: See Minghui Liu's talk

- ✓ R-Parity is conserved (P_R =-1 SUSY particles / +1 SM particles) P_R =(-1)^{2s+3B+L}
 - SUSY particles are pair produced at the LHC and the lightest one is stable.
- ✓ Nature of the stable Lightest SUSY particle (LSP) in MSSM:
 - $\tilde{\chi}_1^0$ with M_{LSP} > GeV or \tilde{G} with M_{LSP} << GeV
- ✓ The value of the Δ M=M_{SUSY} (highest particle produced at LHC) M_{LSP}
 - If $\Delta M > O(100)$ GeV \rightarrow open spectra \rightarrow high energetic objects
 - If $\Delta M < O(100)$ GeV \rightarrow compressed spectra \rightarrow very difficult experimentally

Anyes Taffard

Production of SUSY Particles at the LHC

ATLAS SUSY searches focus largely in addressing direct production of gluinos, stops, EW-gauginos with simplified models

Anyes Taffard

Common Analysis Strategies

Some SUSY processes can be SM-like. SUSY searches rely on accurate modeling of SM backgrounds.

The presented analyses follow a common strategy:

- ✓ Define Signal Regions (SRs) based on signal kinematic features
- ✓ Estimate the SM processes in the SRs using:
 - Semi-data driven method for irreducible backgrounds:
 - Define a Control Region (CR) for each background
 - Normalized Monte Carlo yield to data in Control Regions (CR)
 - Apply transfer factor to extrapolate background yield from CRs to SRs
 - **Data-driven** method for instrumental background (QCD multijet backgrounds)
 - Monte Carlo simulation only for minor backgrounds.
- ✓ All predictions are validated against data in Validation Regions (VRs)
- $\checkmark\,$ Finally, look at the observed data in the SRs

Anyes Taffard

Strong Production Searches

ATLAS Preliminary

 $\sqrt{s} = 7, 8 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Feb 2015

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Inclusive Search
\$\tilde{g} \rightarrow tt \tilde{\chi}_1^0\$
Scalar charm
\$\tilde{Z}+Met\$

Inclusive Searches

- ✓ Final states with jets, missing transverse momentum (E_T^{miss}) and zero or one isolated lepton (e/µ)
- ✓ Broad search strategy with several SRs to obtain best sensitivity:

▶ [arXiv: <u>1501.03555</u>]

- Lepton veto SRs [arXiv: <u>1405.7875</u>]
- Soft lepton SRs
- Hard leptons SRs
- ✓ Many Simplified Model interpretations, with single production and decay process.
- ✓ Combinations to strengthen limits (~50 GeV) and test holes in sensitivity.

Gluino Searches with top quarks

✓ Interpretation for a pair of gluinos decaying promptly via off-shell stop $\tilde{g} \rightarrow t\bar{t} \tilde{\chi}_1^0$

- ✓ Broad search strategy:
 - 0L + 7-10 jets [arXiv: <u>1308.1841]</u>
 - $0-1L + \ge 3 \text{ b-jets [arXiv: } \underline{1407.0600]}$
 - 2L same sign/3L [arXiv: <u>1404.2500</u>]
 - Benefit from low SM backgrounds
 - Can also target low E_T^{miss} scenarios such as RPV or compress spectra

Anyes Taffard

 27^{th} Rencontres De Blois

arXiv: <u>1501.01325</u>

Direct Scalar Charm

- ✓ Final state with large E_T^{miss} and at least two jets, with the two leading tagged as originating from c-quarks.
- c-jet tagging efficiency as a function of jet p_T, is calibrated from data in inclusive jets events containing D^{*} mesons.
 - Tagging efficiency of 19% (13%, 0.5%) is achieved for c-jets (b-jets, light-flavor/gluon jets)
- ✓ Final SR selection based on:
 - Contransverse mass $\mathbf{m}_{\mathrm{CT}} = \sqrt{\left(E_T^{\nu_1} + E_T^{\nu_2}\right) \left|\mathbf{p}_T^{\nu_1} \mathbf{p}_T^{\nu_2}\right|^2}$
 - Reduces ttbar with mis-tagged b's as c-jet
 - Invariant mass of the two c-tagged jets: m_{cc}
 - Reduces Z+jets, with c from gluon splitting

arXiv: 1503.03290 Squarks/gluinos Search with Z final state

 $H_T = \sum_{i} p_T^{jet,i} + p_T^{lepton,1} + p_T^{lepton,2}$

10

- ✓ Final state with Z, ≥2 jets and large E_T^{miss} and H_T
- ✓ Data driven estimates for all major backgrounds
 - Flavor symmetric background (eg tt, WW) estimated from eµ CR
 - Several regions and alternative background estimate methods used for cross-checks
- ✓ Observed 3.0 σ (1.7 σ) over fluctuation in ee (µµ) channels

Third Generation Squark Searches

A Sta	ATLAS SUSY Searches* - 95% CL Lower Limits Status: Feb 2015													
	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	$\int \mathcal{L} dt [\text{fb}]$	1]	Mass limit			Reference				
$\frac{3^{rd}}{\tilde{g}}$ gen.	$\begin{array}{l} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\ell} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\ell} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b t \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> , μ 0-1 <i>e</i> , μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ĩg B B B B B B B B B B B B B B B B B B B		1.25 TeV 1.1 TeV 1.34 TeV 1.3 TeV	$\begin{array}{l} m(\tilde{k}_{1}^{0})\!<\!400{\rm GeV} \\ m(\tilde{k}_{1}^{0})\!<\!350{\rm GeV} \\ m(\tilde{k}_{1}^{0})\!<\!400{\rm GeV} \\ m(\tilde{k}_{1}^{0})\!<\!300{\rm GeV} \end{array}$	1407.0600 1308.1841 1407.0600 1407.0600				
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1} \tilde{b}_{1}, \ \tilde{b}_{1} \to b \tilde{\chi}_{1}^{0} \\ \tilde{b}_{1} \tilde{b}_{1}, \ \tilde{b}_{1} \to t \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1} \tilde{t}_{1}, \ \tilde{t}_{1} \to b \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1} \tilde{t}_{1}, \ \tilde{t}_{1} \to b \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1}, \ \tilde{t}_{1} \to t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1}, \ \tilde{t}_{1} \to c \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1}, \ \tilde{t}_{1} \to c \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1} (n \text{dural GMSB}) \\ \tilde{t}_{2} \tilde{t}_{2}, \ \tilde{t}_{2} \to \tilde{t}_{1} + Z \end{split} $	0 2 e, µ (SS) 1-2 e, µ 2 e, µ 0-1 e, µ 0 m 2 e, µ (Z) 3 e, µ (Z)	2 b 0-3 b 1-2 b 0-2 jets 1-2 b nono-jet/c- 1 b 1 b	Yes Yes Yes Yes tag Yes Yes Yes	20.1 20.3 4.7 20.3 20 20.3 20.3 20.3	\$\bar{b}_1\$ \$\bar{b}_1\$ \$\bar{t}_1\$ \$\bar{t}_1\$ \$\bar{t}_1\$ \$\bar{t}_1\$ \$\bar{t}_1\$ \$\bar{t}_1\$ \$\bar{t}_1\$ \$\bar{t}_1\$ \$\bar{t}_2\$	100-620 GeV 275-440 GeV 230-460 GeV 215-530 GeV 210-640 GeV 150-580 GeV 290-600 GeV		$\begin{split} & m(\tilde{\chi}_1^0) \! < \! 90 \text{GeV} \\ & m(\tilde{\chi}_1^+) \! = \! 2 m(\tilde{\chi}_1^0) \\ & m(\tilde{\chi}_1^+) \! = \! 2 m(\tilde{\chi}_1^0) \! = \! 55 \text{GeV} \\ & m(\tilde{\chi}_1^0) \! = \! 1 \text{GeV} \\ & m(\tilde{\chi}_1^0) \! = \! 1 \text{GeV} \\ & m(\tilde{\chi}_1^0) \! = \! 1 \text{GeV} \\ & m(\tilde{\chi}_1^0) \! = \! 150 \text{GeV} \\ & m(\tilde{\chi}_1^0) \! > \! 150 \text{GeV} \\ & m(\tilde{\chi}_1^0) \! > \! 200 \text{GeV} \end{split}$	1308.2631 1404.2500 1209.2102, 1407.0583 1403.4853, 1412.4742 1407.0583,1406.1122 1407.0608 1403.5222 1403.5222				
	$\sqrt{s} = 7 \text{ TeV}$ full data	$\sqrt{s} = 8 \text{ TeV}$ partial data	$\sqrt{s} = $ full	8 TeV data	1()—1		1	Mass scale [TeV]	j				

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Overview
Stop search combination
Stealth stops

See Alexandre Aubin's talk

Stop Searches Overview

- ✓ Complicated search due to heavy quark masses
- Decays depends strongly on mass hierarchy of sparticles
 - Required dedicated SRs

- If $\Delta m > m_{top}$
 - Decay to on-shell top quarks $(t \rightarrow Wb)$.
- If $\Delta m < m_W$ (compress region)
 - No phase space left to produce massive bottom/top quarks or high p_T objects. Decay can include "soft" charm quark.
- If $m_W < \Delta m < m_{top}$:
 - Can have W's, charginos etc... (depending on mass of sparticles).

Broad search strategy:

- 0L, 1L, 2L, mono-jets searches
- Challenging low-mass models still not excluded

Anyes Taffard

 27^{th} Rencontres De Blois

Stop Searches Combination

- ✓ Search for light scalar top motivated by naturalness argument.
- ✓ Statistical combination of 0L and 1L search channels for $\tilde{t} \to t \tilde{\chi}_1^0$ or $\tilde{t} \to b \tilde{\chi}_1^{\pm}$
 - Improve expected limit by ~50 GeV in stop mass at low LSP mass.
- ✓ Exclusion limits set for different branching ratios x for $\tilde{t} \to t \tilde{\chi}_1^0$ and (1-x) for $\tilde{t} \to b \tilde{\chi}_1^{\pm}$

Stealth stops

[∕a0] [Ge∕

ج[°]∻ 30

20

Stop quarks with mass just slightly above the top mass, are very difficult to find

- Theory uncertainty on ttbar theory cross section is comparable to stop cross section at this mass
- Stop-antistop could mimic top pair production $t \tilde{t} \to t \bar{t} \tilde{\chi}_1^0 \tilde{\chi}_1^0$
- ✓ Use ttbar dilepton candidates (90% pure) to constraint "stealthy stop"
 - Re-interpret ttbar cross section measurement to place limit on top squarks
 - Measure angle between leptons (related to ttbar spin correlation) and test consistency between SM and SM + very light top squark Can exclude $m_{_{top}} < m_{_{stop}} < 191 \ GeV$

Electroweak Searches

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Feb 2015

Electroweak Summary Searches with Higgs

See Alexandre Aubin's talk

ATLAS Preliminary

Electroweak SUSY Summary

- ✓ Very clean multi-lepton (e, μ , τ) signatures with low jet activity
 - Low cross-section balanced by smaller and relatively well understood SM backgrounds
- ✓ Many different final states to consider. Broad search strategy.

Chargino, neutralino decaying to Higgs

- ✓ If the electroweakinos (C_1 , N_2) are Wino-like, mostly Higgs in decay
- \checkmark Three channels analyzed and statistically combined with 3L
 - 1L bb (W \rightarrow lv, h \rightarrow bb)
 - 1L $\gamma\gamma$ (W \rightarrow lv, h $\rightarrow\gamma\gamma$)
 - $2L SS (W \rightarrow lv, h \rightarrow WW)$

Anyes Taffard

 27^{th} Rencontres De Blois

June 2nd 2015 17

Run 2 Prospects

Near future

- ✓ Significant preparation for Run 2 in progress
- ✓ 13TeV Collisions starting THIS WEEK !!!
- Excited to finally lay hands on 13 TeV data
 - Reach for strongly produced SUSY is expected to increase significantly in Run-2
 - New heavy state could be discovered relatively quickly !
 - The HL-LHC will allow to ultimately probe the TeV scale and Natural SUSY

Early Run-2 Prospects

- ✓ How much data is needed at 13TeV for the discovery potential to surpass the 8TeV limit ?
 - Potential of 3σ evidence with 2-10fb⁻¹, even with poor systematics
- ✓ The early months of the 2015 run should be exciting !

Anyes Taffard

Summary And Outlook

- ✓ Comprehensive set of SUSY searches performed with ATLAS Run-1 data yielded many results.
- ✓ No significant excess above SM expectations is observed in any searches
 - Strong exclusion for m_{LSP}~0 GeV for color and electroweak sectors
- ✓ 95% CL exclusion limits are set for various phenomenological models
- Parameter space favored by naturalness argument narrowing
 - Compress spectra region remains challenging

Run-2 is starting !

- Increase in SUSY cross section due to higher center of mass energy, once again opens the door to discovery.
 - Largest increase in energy for many years to come
- ✓ Looking forward to run-2 dataset
 - and hopefully not having to make exclusion plots anymore !
- ✓ If have to be guided by "natural SUSY", have a long way to go… and it will take time.

Anyes Taffard

Summary of ATLAS Run-1 SUSY Searches

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Feb 2015

010	1105. 1 60 2013						$\gamma_3 = 7, 0$ lev
	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fl	b ⁻¹] Mass limit	Reference
			0.0 :				1 105 3035
sət	MSUGRA/CMSSM	0	2-6 jets	Yes	20.3		1405.7875
	$qq, q \rightarrow q\chi_1$	1	2-0 jets	Yes	20.3	$\frac{q}{2}$ 850 GeV $m(X_1) = 0$ GeV, $m(X_2) = m(2^{16} \text{ gen. } q)$	1405.7875
	$qq\gamma, q \rightarrow q\chi_1$ (compressed)	1 9	0-1 jet	Yes	20.3	q 250 GeV m(q)-m(x) = m(c) z c c c	1411.1009
LC ⁴	$gg, g \rightarrow q\bar{q}\chi_1$	1.0.1	2-0 jets	Yes	20.3	8 1.33 IeV m(k)=0 GeV	1405.7875
еа	$gg, g \rightarrow qq\chi_1 \rightarrow qqW^-\chi_1$	1 e, µ	0 2 jets	res	20	8 1.2 TeV m(x1)<300 GeV, m(x1)=0.5(m(x1)+m(g))	1501.03555
S	$gg, g \rightarrow qq(tt/tv/vv)\chi_1$	2 0, μ	0-3 jets		20	8 1.32 IeV m(λ₁)=0 GeV	1501.03555
ive	GMSB (/ NLSP)	1-27+0-17	0-2 jets	Yes	20.3		1407.0603
sn	CCM (wine NLSP)	2 9	-	Yes	20.3	k 1.28 leV m(χ₁)>50 GeV 2 010 0 M 100 0 M 100 0 M	ATLAS-CONF-2014-001
JC/	CCM (bisseine biss NLCD)	$1e, \mu + \gamma$		Yes	4.8	g b19 GeV m(X₁)>50 GeV x c c c	AILAS-CONF-2012-144
-	GGW (higgsino-bino NLSP)	, , , , ,	1 0	Yes	4.8	8 900 GeV m(λ₁)≥220 GeV	1211.1167
	GGM (nggsino NLSP)	$\geq e, \mu(Z)$	0-3 jets	Yes	5.8		AILAS-CONF-2012-152
	Gravitino LSP	0	mono-jet	t Yes	20.3	F ^{1/2} scale 865 GeV m(G)>1.8 × 10 ⁻⁺ eV, m(g)=m(q)=1.5 TeV	1502.01518
÷ +	$\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$	0	3 b	Yes	20.1	<i>x</i> 1.25 TeV m(λ ⁰ ₁)<400 GeV	1407.0600
jec	$\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$	0	7-10 jets	Yes	20.3	§ 1.1 TeV m(𝑘 ⁰) <350 GeV	1308.1841
P	$\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$	0-1 e, µ	3 b	Yes	20.1	\tilde{s} 1.34 TeV m($\tilde{\chi}_{1}^{0}$)<400 GeV	1407.0600
00 N	$\tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+}$	0-1 <i>e</i> , µ	3 <i>b</i>	Yes	20.1	\tilde{x} 1.3 TeV $m(\tilde{\chi}_{1}^{0})<300$ GeV	1407.0600
	$\tilde{h}_1 \tilde{h}_1 = \tilde{h}_1 \rightarrow b \tilde{\chi}_1^0$	0	2 b	Yes	20.1	<u>μ</u> 100-620 GeV m(<i>k</i> ⁰) ≤90 GeV	1308.2631
sk' ion	$\tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \rightarrow t \tilde{\chi}_1^{\pm}$	2 e, µ (SS)	0-3 b	Yes	20.3	\bar{b}_1 275-440 GeV $m(\bar{c}_1^+)=2m(\bar{c}_1^0)$	1404.2500
ict	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow h\tilde{\chi}_1^{\pm}$	1-2 e. µ	1-2 h	Yes	4.7	\tilde{t}_1 110-167 GeV 230-460 GeV m(\tilde{t}_1^0) = 55 GeV	1209.2102, 1407.0583
g	$\tilde{t}_{i}\tilde{t}_{i}$ $\tilde{t}_{i} \rightarrow Wh\tilde{V}^{0}$ or $t\tilde{V}^{0}$	2 e. u	0-2 iets	Yes	20.3	7. 90-191 GeV 215-530 GeV m(²)-1 GeV	1403.4853.1412.4742
7. S	$\tilde{h} \tilde{h} \to \tilde{k} \tilde{V}^0$	0-1 e. u	1-2 h	Yes	20		1407.0583.1406.1122
ct p	$T_1T_1, T_1 \rightarrow tA_1$ $T_1T_1, T_1 \rightarrow tA_1$ $T_2T_1, T_2 \rightarrow tA_1$	0 m	nono-iet/c-t	tag Yes	20.3	7. 90-240 GeV m ^(c) / ₂ -85 GeV	1407.0608
^d	δδ (natural GMSB)	2 e µ (Z)	1 b	Ves	20.3	7. 150-580 GeV mt//mt//S00 GeV	1403 5222
ő ip	$\tilde{t}_1\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	$3 e, \mu (Z)$	1 b	Yes	20.3	72 290-600 GeV mt/p1/200 GeV	1403.5222
	3 3 3 70	0					
	$\ell_{L,R} \ell_{L,R}, \ell \rightarrow \ell \chi_1$	2 e, µ	0	Yes	20.3	γ 90-325 GeV m(<i>x</i> ₁)=0 GeV	1403.5294
	$\chi_1 \chi_1, \chi_1 \to \ell \nu(\ell \tilde{\nu})$	2 e, µ	0	Yes	20.3	X [*] ₁ 140-465 GeV m(X [*] ₁)=0 GeV, m(λ [*])=0.5(m(λ [*] ₁)+m(X [*] ₁))	1403.5294
sct <	$\chi_1 \chi_1, \chi_1 \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu})$	2 τ	-	Yes	20.3	χ_1^* 100-350 GeV $m(\chi_1^*)=0$ GeV, $m(\chi_1^*)=0.5(m(\chi_1^*)+m(\chi_1^*))$	1407.0350
Πų	$\chi_1^-\chi_2^\circ \rightarrow \ell_L \nu \ell_L \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \ell_L \ell(\tilde{\nu}\nu)$	3 e, µ	0	Yes	20.3	χ_1^-, χ_2^- 700 GeV $m(\chi_1^-)=m(\chi_2^-), m(\chi_1^-)=0.5(m(\chi_1^+)+m(\chi_1^+))$	1402.7029
0	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0$	$2-3 e, \mu$	0-2 jets	Yes	20.3	χ_1^*, χ_2^* 420 GeV $m(\tilde{\chi}_1^*)=m(\tilde{\chi}_2^*), m(\tilde{\chi}_1^*)=0$, sleptons decoupled	1403.5294, 1402.7029
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\circ} \rightarrow W \tilde{\chi}_1^{\circ} h \tilde{\chi}_1^{\circ}, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma$	$\gamma\gamma e, \mu, \gamma$	0-2 b	Yes	20.3	χ_1^+, χ_2^+ 250 GeV $m(\tilde{\chi}_1^-)=m(\tilde{\chi}_2^-), m(\tilde{\chi}_1^-)=0, sleptons decoupled$	1501.07110
_	$\tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_{2,3}^0 \rightarrow \tilde{\ell}_{\mathrm{R}} \ell$	4 e,μ	0	Yes	20.3	$\vec{X}_{2,3}^{\nu} \qquad \qquad$	1405.5086
-	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$	Disapp. trk	1 jet	Yes	20.3	$\tilde{\chi}_1^{\pm}$ 270 GeV m($\tilde{\chi}_1^{\pm}$)-m($\tilde{\chi}_1^{0}$)=160 MeV, $\tau(\tilde{\chi}_1^{\pm})$ =0.2 ns	1310.3675
SS Co	Stable, stopped g R-hadron	0	1-5 jets	Yes	27.9	\tilde{g} 832 GeV $m(\tilde{\chi}_1^0)$ =100 GeV, 10 μ s< $\tau(\tilde{g})$ <1000 s	1310.6584
i - i	Stable g R-hadron	trk	-	-	19.1	<i>ğ</i> 1.27 TeV	1411.6795
ng	GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e,$	μ) 1-2 μ	-	-	19.1	x̃ ₁ 537 GeV 10 <tanβ<50< th=""></tanβ<50<>	1411.6795
D G	GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$	2γ	-	Yes	20.3	$\tilde{\chi}_{1}^{0}$ 435 GeV $2 < \tau(\tilde{\chi}_{1}^{0}) < 3$ ns, SPS8 model	1409.5542
	$\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu$ (RPV)	1 μ , displ. vtx	-	-	20.3	φ 1.0 TeV 1.5 <cr<156 br(μ)="1," m(ξ<sup="" mm,="">0₁)=108 GeV</cr<156>	ATLAS-CONF-2013-092
_	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$	2 e. u	-	-	4.6	Σ , 1.61 TeV <i>λ</i> ['] _{1,1} =0.10, <i>λ</i> ₁₃₂ =0.05	1212.1272
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$	$1e, \mu + \tau$		-	4.6	Σ. 1.1 TeV λ ² ₁₁ =0.10, λ _{1/233} =0.05	1212.1272
~	Bilinear BPV CMSSM	2 e. u (SS)	0-3 h	Yes	20.3	<i>q</i> , <i>q</i> 1.35 TeV m(∂)=m(2), c _{Txx} < 1 mm	1404.2500
d	$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow e e \tilde{\chi}$ eu $\tilde{\chi}$	4 e. µ		Yes	20.3	750 GeV m(k ⁰)>0.2×m(k [±]) h≠0	1405.5086
Ω.	$\tilde{\chi}^+_1 \tilde{\chi}^1 \tilde{\chi}^+_1 \rightarrow W \tilde{\chi}^0_1 \tilde{\chi}^0_1 \rightarrow \tau \tau \tilde{\nu}$ are	$3e, \mu + \tau$	-	Yes	20.3	$\frac{1}{2}$ 450 GeV $m(\delta^{1}) \sim 2 m(\delta^{1}) \sim 10^{-10}$	1405.5086
	$\tilde{\varrho} \rightarrow aaa$	0	6-7 iets	-	20.3	ž 916 GeV BB(/)=BB(/)=BB(/)=D%	ATI AS-CONE-2013-091
	$\tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$	2 e, µ (SS)	0-3 b	Yes	20.3	ž 850 GeV	1404.250
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	<mark>دَ 490 GeV</mark> m(t [™])<200 GeV	1501.01325
	$\sqrt{c} = 7 \text{ To} V$		A	9 ToV			
	$y_3 = 7$ TeV full data D	artial data	vs = full	data	1	10 Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

In canonical scenarios, sensitivity achieved up to ~1.3 TeV gluinos, ~700 GeV stop, and ~400 GeV EWK-inos

Anyes Taffard

 27^{th} Rencontres De Blois

ATLAS Preliminary

 $\sqrt{a} = 7.9 \text{ To}/$

BACKUPS

Charm Tagger Performance

Anyes Taffard