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Puzzle of π0 decay to 2γ

By using the method of evaluation which has 
been applied by Schwinger…we have obtained 
the convergent but non-gauge covariant result 
for the γ decay of neutral meson….Thus, in the 
present state of the field theory, we cannot give 
an unambiguous life-time for neutral meson.
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On the r-Decay of Neutral Meson. 

Hiroshi FUKUDA and Yoneji 

P1tJ'sics lllstitzete, T04")'O 

(Reccived May 16, 1949) 

Introduction. 

Recently Tomonagall and Schwinger!) have independently developed a covari-
ant formulation of quantumelectrodynamics (super-many-time theory), and have 

applied it to the explanation of the Lamb shift in the hydrogen atom 
.and the anomalolls magnetic moment of the They have shown that, 
altbough the present theory of fields, in general. gives infinte answers to such 
fiel(l reaction problems, since it cannot be formulated in a Lorent:!.- and gauge-
covariant way without introduction of the singular delta function of Jord'l11 and 
Pauli, it is nevertheless possible to avoid the divergences by amalgamating them 
into the mass and charge, and that the remaining finite term can well account 
for the experimental But there remains the qucst;on, whether or not 
such finite term; as is separated from infinity, can be free from any ambiguity 
arising from the pathological character of delta function of Jordan and 1 auli. 

One typical example of the appearance of such an ambiguity is the photon 
self energy. As first pointed out by Schwinger,!) the photon self cnergy should 
be zero from the covariant point of view,. while, completely against 
Schwinger's prediction, the recent calc:ulation by Wcntzel4) leads to a finite but 
non-gauge covariant result for the photon self energy. It is evidcnt that this 
inconsistent result comes from the mathematical difficulty of obtaining a definite 
expression for the singularity of the light cone of Jordan-Pauli's delta function. 

A very similar situation is also encountded in the T decay of neutral meson. 
By using the method of evaluation which has been applied by Schwinger> to the 
calculation of the anomalous magnetic moment of the electron, we have obtained 
the convergent but non-gauge covariant result for the T decay of ncutral meson. 
Further our result is with the recent discussions of Dyson, Sawada 
._--------
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On the Use of Subtraction Fields and the Lifetimes of Some Types of Meson Decay
J. STEINBERGER

The Institute for Agoenccd St cdy, Princeton, Peur Jersey
(Received June 13, 1949)

The method of subtraction 6elds in current meson perturbation theory is described, and it is shown that
it leads to 6nite results in all processes. The method is, however, not without ambiguities, and these are
stated. It is then applied to the following problems in meson decay: Decay of a neutral meson into two and
three p-rays, into a positron-electron pair, and into another neutral meson and photon; decay of a charged
meson into another charged meson and a photon, and into an electron (or p,-meson) and neutrino. The
lifetimes are tabulated in Tables I, II and III. The results are quite di8erent from those of previous calcu-
lations, in all those cases in which divergent and conditionally convergent integrals occur before subtraction,
but identical whenever divergences are absent. The results are discussed in the light of recent experimental
evidence.

I. INTRODUCTION
ECENTI.Y Pauli and Villars' have shown that it
is possible in electrodynamics to make the self

energy of the light-quantum zero, by the use of some
formal subtraction methods. One of these may most
easily be understood as consisting in the introduction
of several fictitious subtraction helds in addition to the
electron-positron field. The idea, which is due to Rivier
and Stucklberg, ' is the following: The matrix element
contains an infinite integral over the momenta of the
intermediate virtual electron-positron pairs which are
responsible for the self energy. To this matrix element
are added and from it subtracted several others for the
same process, in which however the virtual pairs have
different masses. Since the infinities have the same
structure, it is possible to choose the number and
masses of the additional helds so as to make the ex-
pression converge. In the case of the photon self-energy,
the conditions which are necessary to bring convergence
are also sufricient to make it vanish. One may regard
this procedure as a subtraction method; no real
processes involving these additional fictitious fields,
such as their self energy, or scattering are considered,
and one requires the masses of the extra fields to be
very large. It is also possible to treat the other infinite
quantities' in electrodynamics, the electron self-energy,
and the charge renormalizations in the same way.
However, this is academic, since one may disregard
them, finite or infinite. In meson theories this is not so.
Divergencies of a sort that cannot be removed by
name-calling occur, 4 especially the decay of rgesons into
other particles via an intermediate Fermi-Dirac (nu-
cleon) field. We discuss these processes in this paper.

Present address: University of California, Berkeley, California.
~%. Pauli and F. Villars, Rev. Mod. Phys. 21, 433 (1949).' D. Rivier and E. C. G. Stiicklberg, Phys. Rev. 74, 218, 986

(1948).
3 It has been shown by F. J. Dyson, Phys. Rev. 75, 486 (1949),

that all the in6nite quantities in the perturbation theory of
quantum electrodynamics are either of the form of a correction
to the mass of the electron or to its charge.
4 Divergences of this sort have been exhibited by K. M. Case,

Phys. Rev. 75, 1440 (1949}, in the calculation of the magnetic
moment of nucleons due to their tensor coupling to a vector meson
field.

II. SUBTRACTION FIELDS

Since it is very convenient in these and other held
theoretical problems to use the Feynman diagrams, ' the
reader is assumed to be familiar with this mode of
computation. It is equivalent to the older methods. For
purposes of illustration, consider the disintegration of
a scalar meson into two lighter scalar mesons, via an
intermediate neutron field, and the scalar interaction.
The Feynman diagrams are as follows:
The initial meson, of four-momentum k makes a

neutron-anti-neutron pair; then either the neutron or
the anti-neutron can radiate the meson ki, before the
particles annihilate with the production of the other
meson k.. The two matrix elements are

gg p dP
(SExEiiEi2) & & (2n.)4

L(pi+ki )vi+im)LP r +im]L(p k~ )r +™]X—
(p'+m') [(p+ki)'+m'jL(p —k2)'+m']

+same term with ki, k2 interchanged

gg" I. d'P .
(im)

(2EiEi,iEi, 2) & ~ (2n)'

E3P'+2p(k, k2) m—' ki—k2)—
X
(p'+m') $(p+ ki) '+m' jDp k,)'+m—'j

The integral is logarithmically divergent. However, if
it is now regarded as a function of m, the virtual
nucleon mass, and we subtract and add other nucleon
fields of much larger mass, m; (mo is the mass of the
neutron), the sum will be finite provided P;m,C,=O.
C,=+1 and indicates whether the ith held is to
be added or subtracted. However, there will be a term
left of the form P; C,m; lnm;, which becomes infinite as
the m, (i/0) are made large, unless it is required that
P C,m, lnm;=const. This constant seems to be arbi-
trary, and as long as it is so, the subtraction is not

~ F. J. Dyson, Phys. Rev. 75) 486 (1949).
ii80

...The method [Pauli-Villars] is, however, not without ambiguity...... 



Puzzle of π0 decay

Z 1

�1
dx [f(x+ a)� f(x)] =

Z 1

�1
dx [af 0(x) +O(a2)] = a[f(1)� f(�1)]



Puzzle of π0 decay

Z 1

�1
dx [f(x+ a)� f(x)] =

Z 1

�1
dx [af 0(x) +O(a2)] = a[f(1)� f(�1)]

x ! x� a

Z 1

�1
dx [f(x)� f(x)] = 0



Anomaly

• The key to the understanding of the pion decay 
puzzle was identified by Adler, Bell, Jackiw (1969)

• In massless electrodynamics, numbers of left- and 
right-handed electrons are not conserved 
separately in quantum theory



Chirality
• Consider a massless spin-1/2 particle: 2 chiralities

s

p p
s

left right

L
L

γ

R
R

γ
Chirality does not change in when particle moves in EM 
field (classically)

But chirality is not conserved in quantum theory: anomalies



Landau levels

• To understand anomalies, we start with quantum 
mechanics of a massless fermion in a magnetic field 
Nielsen Ninomiya

B



Massless fermion in a magnetic field

R n=
0 L n=0

n=1

n=2

n=-1

n=-2

E

pz

E2 = p2z + 2nB



Anomalies
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Anomalies

pz

L R

Turn on electric field for some duration of time

B E

ε

d

dt
(NR �NL) � E · B @µj

5µ =
e2

2⇡2
~E · ~B



Anomalies and 
hydrodynamics

• A full understanding of anomalies in quantum field 
theory was achieved by 1980s

• But a possible connection between anomalies and 
hydrodynamics gone mostly unnoticed

before a convenient technique for combining them 
arises: gauge-gravity duality



Gauge/gravity duality (“holography”)

Maldacena (1997): duality between QFT and string theory

The Gauge/Gravity Duality
Maldacena : stack of N D3-branes in type IIB string theory can be described in
two different pictures:

As a quantum field theory
describing fluctuations of the
branes: N = 4 super-Yang-Mills
theory

As string theory on a a curved
spacetime called AdS5×S5

ds2 =
r2

R2
(−dt2+dx2)+

R2

r2
dr2+R2dΩ2

5

{

N

=

GSI 2009 – p.21/42

N=4 super Yang-Mills
theory

string theory in
AdS5xS5 space

ds2 =
r2

R2
(�dt2 + d�x2) +

R2

r2
dr2 + R2d�2

5



Duality as a tool for QFT

• Gauge/gravity duality is particularly useful in the 
strong coupling regime of QFT 

Mapping of parameters

Rl s

g2Nc =
R4

ℓ4s

g2Nc ≫ 1:

field theory cannot be solved by perturbation theory
string theory dual =⇒ Einstein’s general relativity!

GSI 2009 – p.23/42

Mapping of parameters

Rl s

g2Nc =
R4

ℓ4s

g2Nc ≫ 1:

field theory cannot be solved by perturbation theory
string theory dual =⇒ Einstein’s general relativity!

GSI 2009 – p.23/42

g2Nc >>1: string theory becomes gravity

Difficult regime in field theory = easy in string theory



Gauge-gravity duality at 
finite temperature

• Soon gauge/gravity duality was generalized to finite 
temperature

• Quark-gluon plasma (in N=4 SYM theory) = black 
hole in AdS space

• Entropy of the quark gluon plasma = entropy of 
black hole



Hydrodynamics from BHs

• Around 2001 connection between black hole physics and 
hydrodynamics was found Kovtun, Policastro, Starinets, Son...

• Viscosity of QGP ~ absorption cross section of 
gravitational waves by black hole

• Universal ratio shear viscosity/ entropy density: η/
s=1/4π

• Surprisingly close to observed value at RHIC



Viscosity of the quark gluon 
plasma

It’s a Strongly-Coupled Medium  
with Ultra-Low Shear Viscosity 

John Harris (Yale)                                                     PLHC, Vancouver BC, Canada, 4 - 9 June 2012 

There exists a universal lower bound on shear viscosity / entropy ratio (η/s): 
 

The strong-coupling limit of non-Abelian gauge theories with a gravity dual: 
 

→  η/s = 1 / 4π           for the       “perfect liquid”%

Pb+Pb 2.76 TeV 
30-40% central 
ALICE data 

Viscous hydrodynamics calculations from Schenke, Jeon, Gale, PRL 106 (2011) 042301.%
→ 1/4π < η/s < 1/2π 

 

η/s = 1/2π 
η/s = 1/2π η/s = 1/4π 



• Not only viscosity: the full theory hydrodynamics 
“emerges” from black hole physics

• Einstein equation -> Navier Stokes equation

• Furthermore, it has allowed investigation of liquids 
with chiral anomalies



Hydrodynamics with chirality?



Hydrodynamics with chirality?



Hydrodynamics with chirality?
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5D model of fluid with 
triangle anomaly

S =
1

8�G

�
d5x

�
�g

�
R� 12� 1

4
F 2

AB +
4�

3
�LABCDALFABFCD
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5D model of fluid with 
triangle anomaly

S =
1

8�G

�
d5x

�
�g

�
R� 12� 1

4
F 2

AB +
4�

3
�LABCDALFABFCD

�

• U(1) conserved charge modeled by a U(1) gauge field

• anomaly modeled by 5D Chern-Simons term

• rules to extract 4D physics from 5D equations



Two new effects
Erdmenger, Haack, Kaminski, Yarom

Banerjee, Bhattacharya, Bhattacharyya, Dutta, Loganayagam, Surówka

Chiral magnetic
effect (CME)

Chiral vortical
effect (CVE)

Moreover, ξ and ξB completely determined by anomaly
(required by 2nd law of thermodynamics: DTS, Surówka)

~j5 = ⇢5~v �D~r⇢5 +⇠B ~B + ⇠~r⇥ v

diffusionadvection



CME for free fermions

L R

µ

~j5 =
e2

2⇡2
µ ~B



Role of collisions?

• The previous explanation of the CME relies on 
quantization of orbit

• This does not explain the CME when fermion has 
finite mean free path

• to see if CME is universal we turn to kinetic 
theory (Boltzmann equation)



Can kinetic theory 
reproduce anomalies?

• In kinetic theory one follows the evolutions of 
particles in phase space

• By definition the particle number is conserved

• How can one get nonconservation?



Berry curvature in 
momentum space

• Spin and orbital motions are locked

• Momentum change → Berry phase

• modifies the equation of motion

p

s



Semiclassical equation

ẋ =
��p
�p

ṗ = E + ẋ�B

+ṗ��

� = ± p
2|p|3

right-handed

left-handed

Magnetic monopole
in momentum space

� = �p �A(p)

Berry phaseBerry curvature

Chang, Niu



Hamiltonian interpretation

�̇a = {H, �a} {�a, �b} = �ab

{pi, pj} = � �ijkBk

1 + B · � {xi, xj} =
�ijk�k

1 + B · �

{pi, xj} =
�ij + �iBj

1 + B · �



Anomalies from Berry 
curvature

• Solving the equation of motion for a single particle

ẋ = (1 +⌦ ·B)�1 [v +E⇥⌦+ (⌦ · v)B]

ṗ = (1 +⌦ ·B)�1[E+ v ⇥B+(E ·B)⌦]

from this one derive the Liouville equation

(1 +⌦ ·B)
@np

@t
+ · · ·+(E ·B)

✓
⌦ · @np

@p

◆
= 0



Anomaly from kinetic theory

n(t,x) =

Z
dp

(2⇡)3
(1 +⌦ ·B)np(t,x)

@n

@t
+r · j = �(E ·B)

Z
dp

(2⇡)3
⌦ · @np

@p

np = 1
np = 0

@np

@p
flux of Ω through 
the Fermi sphere

@µj
µ =

1

4⇡2
E ·B

anomaly is reproduced

DTS, N.Yamamoto



Consequences of kinetic 
theory

• Anomalies exist in the presence of collisions

• Chiral magnetic effect (CME) also exists in the 
presence of collisions: no Landau level needed.



Anomaly in solid state physics

• Weyl or Dirac semimetals: solids in which low-
energy electrons described by massless Dirac 
equations

• Dirac cones instead of Fermi surfaces

• Anomaly + chiral magnetic effect → negative 
magnetoresistance (DTS, Spivak)



Magnetoresitance from 
anomaly

• Consider a Weyl semimetal in external E and B 
fields

@n5

@t
=

e2

2⇡2
~E · ~B � n5

⌧
n5 ! e2

2⇡2
EB⌧

µ5 ! e2

2⇡2�
EB⌧

j5 =
1

2⇡2
µ5B =

e2

(2⇡2)2�
B2

| {z }
E

positive contrib to conductivity
negative magnetoresistance



Experimental observation 
of anomaly in solids

• Weyl semimetals found: Na3Bi, TaAs, Ca3As2, ZrTe5 

4

D

FIG. 5: Panel A: Sketch of the Landau levels (LL) in a
Weyl semimetal showing chiral states in the lowest LL with
opposite velocities and chiralities (arrows) k B. An E-field k
B breaks chiral symmetry and leads to an axial current. Panel
B shows the triangle anomaly that ruins the conservation of
chiral charge. Panel C: The T dependence of the resistivity ⇢

in B = 0 and Hall coe�cient RH in Na3Bi. RH is measured
in B <2 T applied k c. At 3 K, RH corresponds to a density
n = 1.04⇥1017 cm�3. The inset shows the contact labels and
the x and y axes fixed to the sample. Panel D: Curves of the
longitudinal magnetoresistance ⇢xx(B, T ) at selected T from
4.5 to 300 K measured with B k x̂ and I applied to (1,4).
The steep decrease in ⇢xx(B, T ) at 4.5 K reflects the onset
of the axial current in the lowest LL. Adapted from Xiong et

al. [27].

the chiral conductivity [6]

�� =
e2

4⇡2~c
v

c

(eBv)2

✏2F
⌧v, (2)

where ⌧v is the intervalley life-time and ✏F the Fermi
energy.

IV. DIRAC SEMIMETAL NA3BI

The Dirac semimetal Na3Bi grows as mm-sized, deep-
purple, plate-like crystals with the largest face paral-
lel to the a-b plane (ĉ is normal to the planes) (Fig.

4a,b). We annealed the crystals for 10 weeks before
opening the growth tube. Details of the growth and
characterization are reported in Kushwaha et al. [28].
To avoid oxidation, crystals were contacted using silver
epoxy in an Argon glove box, and then immersed in para-
tone in a capsule before rapid cooling. In Na3Bi, the
Dirac nodes are located at the wave vectors (0, 0,±kD)

with kD ' 0.1 Å
�1

[19, 20]. Initial experiments in our
lab [26] on samples with a large Fermi energy ✏F (400
mV) showed only a positive MR with the anomalous B-
linear profile reported in Cd3As2 [25].
Recent progress in lowering ✏F has resulted in sam-

ples that display a non-metallic resistivity ⇢ vs. T profile
and a low Hall density n ⇠ 1 ⇥ 1017 cm�3 (Fig. 5C).

We estimate the Fermi wavevector kF = 0.012 Å
�1

(8⇥
smaller than kD). The unusual profiles of ⇢ and the Hall
coe�cient RH in Panel C imply the zero-B energy spec-
trum shown in Panel B. Below ⇠10 K, the conductivity
is largely due to electrons in the conduction band with
electron mobility µ ⇠ 2,600 cm2/Vs). Because the energy
gap is zero, holes in the valence band are copiously ex-
cited even at low T . As T rises above 10 K, the increased
hole population leads to a steep decrease in ⇢ and an in-
version of the sign of RH at 62 K. From the maximum
in RH at 105 K, we estimate that ✏F ⇠ 3kBT ⇠ 30 mV.
As shown in Fig. 5D, the resistivity ⇢xx in a longitudinal
field (B||I, the current) displays a remarkable peak at 4.5
K corresponding to a large negative MR (the resistance
measured is R14,23 (I applied to contacts 1 and 4, and
voltage measured between contacts 2 and 3; the inset in
Fig. 3C shows the contact labels and the x and y-axes).
Raising T above ⇠100 K suppresses the peak. The small
density n implies that ✏F enters the lowest (N = 0) LL
at B ⇠ 4-6 T.

V. A NARROW CURRENT PLUME

The axial current is predicted to be large when B is
aligned with E. A valuable test then is the demonstra-
tion that, if E is rotated by 90�, the negative magne-
toresistance (MR) pattern rotates accordingly, i.e. the
axial current maximum is selected by B and E, rather
than being pinned to a crystal axis, even in the weak-B
regime.

To test the anisotropy, we rotate B in the x-y plane
while still monitoring the resistance R14,23. Figure 6A
shows the curves of the resistivity ⇢xx vs. B measured
at 4.5 K at selected � (the angle between B and x̂). The
MR is positive for � = 90� (B||ŷ), displaying the nominal
B-linear form observed in Cd3As2 [25] and Na3Bi [26]
with B||c. As B is rotated towards x̂ (� decreased),
the MR curves are pulled towards negative values. At
alignment (� = 0), the longitudinal MR is very large and
fully negative (see SI for the unsymmetrized curves as
well as results from a second sample).

We then repeat the experiment in situ with I applied
to the contacts (3, 5), so that E is rotated by 90� (the

1503.08179 (Na3Bi)FIG. 2: Magnetoresistance in field parallel to current ( ~B k a) in ZrTe5. (a) MR at various

temperatures. For clarity, the resistivity curves were shifted by 1.5 m⌦cm (150 K), 0.9 m⌦cm

(100 K), 0.2 m⌦cm (70 K) and �0.2 m⌦cm (5 K). (b) MR at 20K (red symbols) fitted with the

CME curve (blue line); inset: temperature dependence of the fitting parameter a(T ) in units of

S/(cm T2).

observed resistivity can be fitted with a simple quadratic term (Supplementary materials,

Fig. S1). This term is treated as a background and subtracted from the parallel field

component for all MR curves recorded at T  100 K.

A negative MR is observed for T  100 K, increasing in magnitude as temperature

decreases. We found that the magnetic field dependence of the negative MR can be nicely

fitted with the CME contribution to the electrical conductivity, given by �CME = �0 +

a(T )B2, where �0 represents the zero field conductivity. The fitting is illustrated in Fig.

2(b) for T = 20 K, with an excellent agreement between the data and the CME fitting

curve. At 4 Tesla, the CME conductivity is about the same as the zero-field conductivity.

At 9T, the CME contribution increases by ⇠ 400%, resulting in a negative MR that is

much stronger than any conventional one reported at an equivalent magnetic field in a

non-magnetic material.

At very low field, the data show a small cusp-like feature. The origin of this feature is not

completely understood, but it probably indicates some form of anti-localization coming from

the perpendicular ( ~B k b) component. Inset in Fig. 2(b) shows the temperature dependence

of the fitting parameter a(T ), which decreases with temperature faster than 1/T , again

consistent with the CME.

6

1412.6543 (ZrTe5)



Conclusion

• Effects of anomaly in hydrodynamics: first 
discovered within gauge/gravity duality

• Condensed matter physics: parallel developments: 
Berry curvature on Fermi surface 

• Observed negative magnetoresistance of Weyl 
semimetal, suggested as a signature of anomaly


