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String(Gravity)/Gauge theory duality

» Contemporary understanding of dualities originates
from String theory
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Closed strings

» The action: the most general sigma model string
action preserving the symmetries of the theory and

renormalizability is

where

S =S8q+ S+ Se
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Closed strings

» The action: the most general sigma model string
action preserving the symmetries of the theory and
renormalizability is

S =S8q+ S+ Se

where
» G-coupling
1 « 14
Sa=—1— / d*0/q 9P X" Dp X" G (XH)
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Closed strings

» The action: the most general sigma model string
action preserving the symmetries of the theory and
renormalizability is

S=S8q+ 5+ Ss
where
» (G-coupling
1

4o

Se=—

/ d*0\/g §*P 0o X 05 X" G (XH)

» B-coupling
1
S — / 40 P9, X 95 X" By (XH)

4o’
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Closed strings

» The action: the most general sigma model string
action preserving the symmetries of the theory and
renormalizability is

S=S8q+ 5+ Ss
where
» (G-coupling
1

4o

Se=—

/ d*0\/g §*P 0o X 05 X" G (XH)

» B-coupling
1
S — / 40 P9, X 95 X" By (XH)

Ao/
» ®-coupling

1
Sp = —4/d20\/§<1>(X“)R(2).
T
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Low-energy limit of string theory
Requirements: the fluctuations have to respect string
theory invariances:

» 2d reparametrization invariance
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Requirements: the fluctuations have to respect string
theory invariances:

» 2d reparametrization invariance
» target space Lorentz invariance
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Low-energy limit of string theory Xt‘i{{;ziig‘i
theory

Requirements: the fluctuations have to respect string correspondence
theory invariances: H. Dimov and

R.C.Rashkov
» 2d reparametrization invariance
» target space Lorentz invariance
» Weyl invariance
e The energy-momentum tensor is:

Closed strings

1
Toas = 8aX“85XM — §T]agangaan =0.
e The conservation conditions
aaTaﬁ =0, ,T% =0.

Define O(z) = T + 7% and ©(z) = T — T°'. The
algebra closed by ©(z) is the so-called ‘ Virasoro algebra‘

c L,
[Ln, L] = (n—m)Ln+m+En(n2—1)5n+m,0, O(z) = i



e Requiring above symmetries of the o-model string Vortices and
. g ang 0 string/gauge
action, one ends up with the conditions ensuring the theory
g g g c correspondence
vanishing of the corresponding s-functions:
H. Dimov and
R.C.Rashkov

1
BS,: Ru — ZHW,\H;,”\ +3D,0,® =0,

Closed strings

1
B
E —§DUHUW, + HU/WDJ(I) =0,
1 o 1
I 2 2 2
: =|ld—-10 — — | D*® - 2(Vd)* — —H*| =0.
5 la—10-% (Ve - 2] =0



e Requiring above symmetries of the o-model string Vortices and

string/gauge

action, one ends up with the conditions ensuring the theory
vanishing of the corresponding 3-functions: conrespendence

H. Dimov and
R.C.Rashkov

1
BS,: Ru — 1HWH;’A +3D,0,® =0,

1
B
1224 : _§D0—H0}LV + HU#VDJ(I) = O’ Closed strings
1 o 1
3 2 2 ?
;. —=[d—10] - — |D*® - 2(V®)* — —H*| =0.
B 6[ ] 2 [ (Ve) 12 ] ’

‘The effective 10d action from closed strings ‘

1
2K
y/ should be understood as a universal one, i.e. any
superstring background must satisfy the above equations
y/ the equations of motion following from this action
coincide with the conditions ensuring vanishing of the
S-functions.

S = /dlox |Gle—2® (R + 4(6®)? — 112H2>



Open strings siinglgauge

theory
correspondence
» adding open string sector H. Dimov and
In the case of boundaries of the world sheet one can
write the action as
1 2 1 (e}
S = d U*(aaX‘ua XM Open strings
17ra’ » 2

+6° B, 00 X" 05 X") + dalA“al)(“)
ox



- Vorti d
Open strings sting/gmuge
theory
correspondence
» adding open string sector L
In the case of boundaries of the world sheet one can

write the action as

1

1mo!

S

1
( / 20~ (06X, 0" X"
s 2

+6° B, 00 X" 05 X") + dalA“al)(“)
ox

» boundary conditions:

(NN) : 8U‘X|<7:O,7r =0 =

1 .
X(7,0) = q+ 2d'pr +iV2a/ E —cosnoe” "7
n
n#0
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Open strings



Vortices and

string/gauge
theory

(DD) o X\U:O = q;, X|0':7T = qf — correspondence

1 1 ) H. Dimov and

X(T, 0—) =gq; AL *(Qf _ qz) + E Z cos no_e—znT R.C.Rashkov
T n
n#0

(ND) o 8O'X|o':0 = 07 X‘U:ﬂ' = qf = Open strings

1 .
X(r,0) =qf + V2 Z —cosnoe” "7

n
nezZ+1/2
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(DD) : X‘U:() = i, X|U:ﬂ' =4qf =

1 1 . H. Dimovan\cli
X(r,0)=gq + ;(Qf —qi) + Z . cosnoe mr R.C.Rashko
n#0
(ND) : 80'X|0' 0= 0 X‘a = — Qf — Open strings
X(r,0) =gy +1ivV2a! Z *Cosnae —
n€Z+1/2

» expanding the above action we get model dependent

terms
S][ _ i dlU Z 1 F2
open — _2,%2 T 2(p + 2)' p+2»
p

where F) ., is the field strength of a p + 1 form gauge
field. The couplings A,, get promoted to gauge fields
on the subspace where string endpoints live.
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Brane degrees of freedom

» Dirichlet boundary conditions: determine a subspace
called D-brane
» Stack of NV parallel D branes

i D—bran/j/z'brane
N

Figure: The degrees of freedom N parallel D-branes.

c\
l
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‘ Effective open string action sources ‘

To complete this discussion we list the various sources
that arise in string theory in Table 1.

| type | form | electric source | magnetic source |

A | Fy DO D6
A | Fy D2 D4
B | Iy D(-1) D7
1B | Fy D1 D5
B | Fy D3 D3

Table: Field strengths and sources in type Il strings

The main conclusion one can draw is that the
(p + 1)-dimensional world-volume serves as source of
(p + 2)-form field Fy,, 5.
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Gauge theories on Dp brane stinggauge
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Spp = SpBr + Swz ,
Spsr = T / PHESTry [~ det (PG + Byl + 270 Fay)
Dp
Swz =1, /Z STI"P[C(Z)] e alhezodd ,
Dp 3 S::g:lhec Dp

where T, is the brane tension.

1
Tp - gs (27-()17&/(17'1'1)/2 ’

The pull-back of the background metric G, and
Kalb-Ramond-field B,,, is denoted by P. STr is the
symmetrized trace.



Vortices and

string/gauge
One can expand the brane action and obtain the leading corsponieres
contribution b e
S = Tp/ dPrie \/§6_¢(27ra’)2%tr (FaﬁFCVB)
+Tp/ZC(")/\tre2m'F+-.. . (1)
T
where we have not written terms involving fermions and b

scalars. This action is the sum of
» a Yang-Mills term,
» a Wess-Zumino term,

» an infinite number of corrections at higher orders in
o/ indicated by - - - in (1)



» The string endpoints on the same D,, branes
transform under adjoint representation of the gauge
group. The large number of these branes gives the
background geometry.

» The string endpoints ending on different D, — D,y
branes transform in the fundamental. This is the way
we introduce flavors in the theory.
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) ) Vortices and

» The string endpoints on the same D,, branes siinglgauge
transform under adjoint representation of the gauge correspondence
group. The large number of these branes gives the I, iy e

R.C.Rashkov
background geometry.

» The string endpoints ending on different D, — D,y
branes transform in the fundamental. This is the way
we introduce flavors in the theory.

N Dp’ ends in the fund rep

ends in the adj ends in the adj



The solution for the D3 branes can be obtained under Vortices and

string/gauge

simple assumptions of Lorentz invariance, rotational i
symmetry in the transverse space and supersymmetry. It 1. Dimoy and
arises from solving the combined system R.C.Rashkov
1 10 4
g = dV Ly d*zLp3 + Sint- (2)
212 (10) +
M P

The explicit form of the D3-brane solution is
2 _ 2 2 S/CFT conjecture
ds® = de()+H2 (dy +y dQ( )> Ad

4
D3-brane = { 1) =1+ (5> ’
F(5) =d*c AdH ! + xd*z A dHil,
® =g, R*=4mg;N.(/)2.
We note that all the elementary brane solutions for small

y have the warp factor which on the near horizon limit
determines the geometry of the background.



» In the near-horizon limit, y/R — 0, the theory in the
bulk and that on the stack of the brane decouple.
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» In the near-horizon limit, y/R — 0, the theory in the
bulk and that on the stack of the brane decouple.

» The geometry becomes that of AdSs x S°

» e the conjecture is:

N = 4 U(N) super-Yang-Mills theory in 3 + 1
dimensions is the same as (or dual to) type IIB
superstring theory on AdSs x S° spacetime.
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4
1

* Type IIB Super-

. spacetime

In the near-horizon limit, y/R — 0, the theory in the
bulk and that on the stack of the brane decouple.

The geometry becomes that of AdSs x S°

e the conjecture is:
N = 4 U(N) super-Yang-Mills theory in 3 + 1
dimensions is the same as (or dual to) type IIB
superstring theory on AdSs x S° spacetime.

..............

string on AdS5 x
S background

+

Type lIB Super-
Gravity in D=1+9

Ve mmsesscs s e e e e e .-
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* Type IIB Super-

' spacetime

In the near-horizon limit, y/R — 0, the theory in the
bulk and that on the stack of the brane decouple.

The geometry becomes that of AdSs x S°

e the conjecture is:
N = 4 U(N) super-Yang-Mills theory in 3 + 1
dimensions is the same as (or dual to) type IIB
superstring theory on AdSs x S° spacetime.

..............

N = 4 SU(N,)

string on AdS5 x Supersymmetric
S® background Yang-Mills
+ +

Type lIB Super-
Gravity in D=1+9

Type IIB Super-
Gravity in D=1+9
spacetime

Ve mmsesscs s e e e e e .-
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» Explicit form of the correspondence:

Zorr = {exp|[ poO))orr = LZrav[@ — ¢o)-

where

ZG’rcw [¢ — ¢0] = Z eSGrav[¢]

$1o.4d5=%0
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» Explicit form of the correspondence:

Zorr = {exp|[ poO))orr = LZrav[@ — ¢o)-

where

LGrav [¢ — ¢0] = Z esGTav[Qﬁ]

$1o.4d5=%0

» After (holographic) renormalization

log Zorr = Ziran[® — ¢0)-
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» Explicit form of the correspondence:

Zorr = {exp|[ poO))orr = LZrav[@ — ¢o)-

where

LGrav [¢ — ¢0] = Z esva[Qﬁ]

$1o.4d5=%0

» After (holographic) renormalization

log Zorr = Ziran[® — ¢0)-

» Defining ¢ = 5 ~%¢ one can state the
correspondence
577/57"671 |:¢:|

Grav

(O(x1) - Olan)) =

8p(x1) -+ 6p(wn) pmg
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» There are various studied case where the
correspondence (sometimes approximately) hold.
Such a theory: Strings in Pilch-Warner background.

TJHEP 1211 (2012) 073 A. Mohammed, J. Murugan and
H. Nastase
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» There are various studied case where the
correspondence (sometimes approximately) hold.
Such a theory: Strings in Pilch-Warner background.

» There are cases where the SUSY is broken down to

N =1 and those theories are much closer to
Quantum ChromoDynamics (QCD).

TJHEP 1211 (2012) 073 A. Mohammed, J. Murugan and
H. Nastase
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Vortices and

» There are various studied case where the swinglosuge
correspondence (sometimes approximately) hold. correspondence

Such a theory: Strings in Pilch-Warner background. H. Dimov and

R.C.Rashkov
» There are cases where the SUSY is broken down to
N =1 and those theories are much closer to
Quantum ChromoDynamics (QCD).

» There are cases where holography is established for
lower dimensions - AdS,/CFTs;, AdS3/CFTs.

e We will be interested mainly in AdS,/CFTs, or
so-called ABJM theory. The ABJM model represents the
IR limit of the theory of N coincident M2-branes moving in
Ry, x C*/Z; background. Itis a N = 6 supersymmetric
U(N)r x U(N)_x CS gauge theory, with bi-fundamental
scalars, fermions in the fundamental of the SU(4)g.

e Consistent Abelization ansatz in bottom-up approach to
ABJM = Abelian vortices and Toda system'.

TJHEP 1211 (2012) 073 A. Mohammed, J. Murugan and
H. Nastase

AdS/CFT conjecture




| Non-abelian vortices

2The gauge field A4,,, 1 = 0, 1, 2 depends only on 3d coordinates.
The other components of the connection become scalars ¢"
depending also on 3d coordinates.
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| Non-abelian vortices | Vertices and
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The Field content: correspondence
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» Two Higgs fields: N x N matrices H', H?
» Adjoint scalars coming from dimensional reduction
o",r=1,...,6 —d.
Non-abelian
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2The gauge field A4,,, 1 = 0, 1, 2 depends only on 3d coordinates.
The other components of the connection become scalars ¢"
depending also on 3d coordinates.



| Non-abelian vortices | Vertices and

string/gauge
. theory
The Field content: correspondence
» Gauge fields A, p =0,1,...,d -1 L

» Two Higgs fields: N x N matrices H', H?
» Adjoint scalars coming from dimensional reduction
¢ r=1,...,6—d.
The Lagrangian density. We give below the lagrangian
in 6d. The other cases can be obtained by trivial
dimensional reduction?.
Leq = tr —2;2FWFW + D'HYD,HY| -V, (3)

Non-abelian
vortices

where (we include the covariant derivative for eventual
scalars ¢" coming from the dimensional reduction)
D,¢" =0,¢" +i[A,,¢"], D,H=(0,+1A,)H,
= =00, 1D (4)

2The gauge field A4,,, 1 = 0, 1, 2 depends only on 3d coordinates.
The other components of the connection become scalars ¢"
depending also on 3d coordinates.




The potential V' is given by

2

V= gztr {(Hlff” — H?H* — a1)® + AH*H H' H?T| .
(5)
e Dimensional reduction = additional terms:
1
329" ¢+ (H?H*' + H'H')¢" ¢ (6)

The triplet of Fayet-lliopoulos parameters is chosen to the
third direction: (0,0, ¢).

e The SUSY requires vanishing of the vacuum energy.
This means that the following equations must be satisfied

H'HYY — H?H* = 1 (7)
H?*H' = 0. (8)

The additional terms coming from the dimensional
reduction force ¢" = 0,r =1, 2, 3.
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Symmetries:

» Gauge symmetry: U(N¢)

» Flavor symmetry: SU(Np).
The Higgs fields: H! transforms as (N, N) while H?
transforms as (N, N). The explicit matrix structure of
these field is as follows:
H'=HY H2=H%, a=1,...,Ng, ,i=1,...,Nr

where a are U(N¢) index and i is SU(Nr) index.

In either dimension, the vacuum is the so-called
color-flavor locking phase, i.e. the ground state develop a
gap. This phase is characterized by

=ecly, & H?=0. (9)

In this phase the symmetry is broken
U(Nc) x SU(Np) % SU(N) (¢4 r)- (10)
The symmetry is further broken by the presence of vortex:

SUN) ey =5 UM

Vortices and
string/gauge
theory
correspondence
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R.C.Rashkov
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Vortex equations. To obtain the vortex equations we use
the Bogomol'nyi completion trick. Namely, we write that
energy (hamiltonian density) as complete square

2

1 2 .
E=tr |:g2(B3 -+ %(Cl]\[ = HHT)) + (DlH—l-’LDQH)

(DyH +iDoH)!| + tr | ~eBy + 2i0 HDy H'|, (1)

where we set H' = H, F5 = Bs is the third component of
the magnetic field. All others are vanishing in order to
satisfy the vacuum conditions.

We conclude that the Bogomol’nyi bound is saturated iff

D1H +iDyH = 0, (12)
2
Fio = %(HHT —cly). (13)
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Tension: The tension of the vortex string measures the Vortices and

winding number k of the U(1) part of the broken U (N¢) S
gauge symmetry czrjponden:e
R Rashkov

T = —C/dxtI‘Flg = 27TC]<5, ke Zzo. (14)

Non-abelian
vortices



Tension: The tension of the vortex string measures the
winding number & of the U(1) part of the broken U (N¢)
gauge symmetry

T = —C/dxtI‘Flg = 27TC]§, ke Zzo. (14)

NS5

4
2349 k{1 YM
9 ¢ 1'6
X
9
the gauge coupling g: g = A;:Sls . Flparameter: (c =)v? = (%A)g#dg

Figure: The brane construction of non-abelian vortices and the
corresponding parameters (Hanany-Tong, Tong).
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The moduli space for k = 1 vortices is:
My =1 = C x CPN~! and for I copies of them looks like

(C]P)N—l

)ZlQ :C[a_l 2

cpN -1

1

1

$
21

oo
N o= = =

!
CP

Figure: The moduli space of k = 1 vortex.
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The moduli space for k = 1 vortices is: Vortices and

_ . N string/gauge
My =1 = C x CPN~1 and for I copies of them looks like ey
? correspondence
H. Dimov and
CcpN-t R.C.Rashkov
cpN -1
X1 CpN -t -
: >Z2Q i
) 1 i
Z 1
1 PR 2
zZ2
CP

Figure: The moduli space of k = 1 vortex.
Non-abelian
vortices

In the case of arbitrary k& the moduli space is more
complicated. For instance in the case of No = Np

Mo s — {Ho(2) | Ho(z) € My, deg(det(Hp)) = k}
Nk =

S < , (15)
’ {V(2)|V(z) € My, detV(z) = 1}

where My = N x N are matrices of polynomials of z:



¢ One can start with the moduli space of instantons which
can be described by the following quotient

Mun ={(B,1)|[B,B" + II" = (1}/U (k)

= {(Bc, Ic)}/GL(k; C), (16)
where we have defined the k& x N matrix
(I = Iy, Iy, - - -, Iy )) (€ach I, is a k-column).

e Where and how (Bc, Ic) act =
Bc € Hom(V,V); Bc: V —V (dimgV =k); (17)
Ic e Hom(W,V); Ic: W —V (dimcW = N). (18)

I By
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The ADHM construction uses the following data: Vortices and

string/gauge

» complex vector spaces V and W of dim k and N, theory

correspondence
» k x k complex matrices By, Bs, a k x N complex H. Dimov and
0 0 R.C.Rashkov

matrix 7 and a N x k complex matrix J,

» areal moment map
ytr = [B1, B]] + [Ba, BY] + IIT — JtJ,
» a complex moment map p. = [B1, Ba] + 1J.

» Given By, Bo, |, J such that . = . = (1, an
anti-self-dual instanton in a SU(N) gauge theory
with instanton number & can be constructed,

Non-abelian
vortices

» All anti-self-dual instantons can be obtained in this
way and are in one-to-one correspondence with
solutions up to a U(k) rotation which acts on each B;
in the adjoint representation and on I and J via the
fundamental and antifundamental representations

» The metric on the moduli space of instantons is that
inherited from the flat metric on B;, I and J.



Vortices and
string/gauge
theory
correspondence

Noncommutative instantons: (N. Nekrasov, H. Dimov and
A. Schwarz, 98’) In a noncommutative gauge theory, the

ADHM construction - the procedure is identical to thye

commutative case, moment map i is set equal to the

self-dual projection of the noncommutativity matrix of the

spacetime times identity matrix.
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Noncommutative instantons: (N. Nekrasov, H. Dimov and
A. Schwarz, 98’) In a noncommutative gauge theory, the

ADHM construction - the procedure is identical to thye

commutative case, moment map i is set equal to the

self-dual projection of the noncommutativity matrix of the

spacetime times identity matrix.

Vortices: Setting B2 and J to zero, one obtains the

classical moduli space of nonabelian vortices in a Nomabelian
supersymmetric gauge theory with an equal number of vortices
colors and flavors. The Fayet-lliopoulos term, which

determines a squark condensate, plays the role of the
noncommutativity parameter in the real moment map.



e Abelian case: Vortices and

string/gauge

The Se’[up: theory
- q d

» ¢ is a complex smooth scalar field on R? (= H! conespentenee

H. Dimov and

above) . R.C.Rashkov

» A;, 1 =1,2is a smooth real vector field.
We assume that the above two fields satisfy

Di¢p:= (01 £id)p —i(A; £iA2)¢ = 0.
For w € R2? smooth and real, we have the invariance
¢ — €W(Z); Ai — Ai + 82‘(,0,

» We assume that A is specified according to the

Coulomb gauge, i.e. it is divergence-free Aoetan case
A1+ 0245 = 0. (19)
» We choose a real function, &, satisfying
V§ = £(—A2, A1), (20)

Yi=etp = (0 x1id)Y =0. (21)



Moduli matrix approach.
To solve votex eqs = ansatz:

H = §7'(2,2)Ho(2),

S~Y(z,2) € GL(N,, C); Ho(z) is an arbitrary (so far)
holomorphic matrix.
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Moduli matrix approach.
To solve votex eqs = ansatz:

H =87 (2, 2)Ho(2), (22)
S~Y(z,2) € GL(N,, C); Ho(z) is an arbitrary (so far)
holomorphic matrix.
¢ Vortex egs give:

Ay +idy = —2iS7(2,2)9:5(z, 2). (23)

The matrix Hy(z, 2) is called moduli matrix.
It is convenient to introduce a matrix Q(z, z) as

Q(z,2) == 8(z,2)5(2, 2). (24)

In terms of Q(z, z) (13) takes the form

2
9,(2719:Q) = %(ch — Q' H HY). (25)
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In terms of Q(z, z) the energy density (11) is Vortices and

string/gauge
theory

a 4 a corresponaence
Epps = 2c00 <1 = 238) log det(2. (26) ’ D.p d
g R.C Rashiov

The equation (25): asymptotically ., — LHoH{. The
vorticity k:

T =2nck = ;ijl{dzaz log det(HOHS) + c.c. (27)

which leads to boundary conditions for Hy on S’_:

det(Hp) ~ 2k, forz - . (28)

Abelian case



In terms of Q(z, z) the energy density (11) is Vorces and
_ 4 S"'R?e?,?gge

Epps = 2c00 <1 - 288) log det(2. (26) SIEENATE

cg H. Dimov and

R.C.Rashkov

The equation (25): asymptotically ., — LHoH{. The
vorticity k:

T =2nck = ;ijl{dzaz log det(HOHS) + c.c. (27)

which leads to boundary conditions for Hy on S’_:
det(Hp) ~ 2k, forz - . (28)

e The zeroes of Hy: positions moduli:

Abelian case

k

P(z) = det(Hyp) = H(z — z).

i=1



In terms of Q(z, z) the energy density (11) is Vortces and
string/gauge
theory

_ 4 _ correspondence
Epps = 2c00 <1 ; 268) log detf2. (26) H D'p d d
cg R.CRashiov

The equation (25): asymptotically ., — LHoH{. The
vorticity k:

T =2nck = ;iy{dzaz log det(Hng) + c.c. (27)

which leads to boundary conditions for Hy on S’_:

det(Hp) ~ 2k, forz - . (28)
e The zeroes of Hy: positions moduli:
k
P(z) = det(Hyp) = H(z — z).
=1

e Orientational moduli:

Ho(Zi))Zi =0 <= H(Z = 5,2 = Z))Z =0. (29)



S2)CHE2

Non-abelian generalization

Final comments
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A different approach:

» Let {z,...,2n} be the set of zeroes of ¢ (with
multiplicities). It is useful to explicitly separate zeroes

N
$(z,2) =€) T](z - 2) h(2), (30)
j=1

where h(z) is non-vanishing (and ! exists!)
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A different approach:

» Let {z,...,2n} be the set of zeroes of ¢ (with
multiplicities). It is useful to explicitly separate zeroes

N
$(z,2) =€) T](z - 2) h(2), (30)
j=1

where h(z) is non-vanishing (and ! exists!)
Now we can change the gauge as
¢ — |hlh~"o. (31)

Then one can define the field ¢ using ¢ and & as

'N
i3 05

$(2) = o(z)le =17, |9(2)] = €*|h(2) \H!Z

Al = |det h(2)], ;= Arg(z — z).
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The equation (19) (D+¢ = 0) becomes

N
dalog|g + 01 Y ;= £Ay,

=

N
81 log ‘¢| — (92 ZQOJ' = :FAQ.

J=1
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The equation (19) (D+¢ = 0) becomes Vortices and

string/gauge
N theorz
correspondence
82 10g ‘¢| + a1 Z Pj = iAl’ H. Dimov and
j:l R.C.Rashkov
N
Oy log [¢| — 02 Z pj = FAs. (32)
7=1

» The equations (32): smooth expressions for A4; in
terms of gauge invariant quantity |¢|!
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The equation (19) (D+¢ = 0) becomes

N
Balog |g + 01 Y ;= A,

J=1

N
81 log ‘¢| — 62 ZQOJ' = :FAQ.

j=1

» The equations (32): smooth expressions for A4; in
terms of gauge invariant quantity |¢|!

» Having that V¢ = (—As, A;), one easily finds that
log || is @ harmonic.

(32)

Vortices and
string/gauge
theory
correspondence

H. Dimov and
R.C.Rashkov

Abelian case



The equation (19) (D+¢ = 0) becomes Vortices and

string/gauge
theory
correspondence

N
Balog |g + 01 Y ;= A,

H. Dimov and
j:l R.C.Rashkov
N
Oy log [¢| — 02 Z pj = FAs. (32)
7=1

» The equations (32): smooth expressions for A4; in
terms of gauge invariant quantity |¢|!

» Having that V¢ = (—As, A;), one easily finds that
log || is @ harmonic.

» For the laplacian of log |¢| we find

Abelian case

N
—Alog|¢|?> = —2A¢ —2Alog |h|> — 47 ) 6(z — z;
J

j=1

N
=+Fp — 4 ) 8(z — 2). (33)
j=1



e In the abelian case ¢(z) defines the Higgs (matter)
sector. To make connection with Liouville theory let us
define

p:=log|o|?, & setofzeroes {z,...,2y}. (34)

Then the field ¢(z) takes the form familiar from Liouville
theory

1 &
zp(2)£i Zl ®j

TOETHES

The equations (32) in terms of p are

N
1
A== (282p + 01 Z goj) (36)

j=1

(35)

N
1
Ay =7F (231p — 0y Z 903) : (37)

J=1
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» The equation for Higgs-Maxwell vortex in terms of ¢

becomes that of Liouville field, namely

N
—Ap = 1—6”—425(2—2@),

in the gauge A4y = 0.

J=1

(38)
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» The equation for Higgs-Maxwell vortex in terms of ¢
becomes that of Liouville field, namely

N
—Ap = 1—6”—425(2—@),

in the gauge Ay = 0.
» If we consider Chern-Simons term with a Higgs field,
we get CS-Higgs self-dual vortex. In that case we

manipulate the quantities analogously and find

—Ap=

Ag =

4
—eP(v? = eP)

k;?

:I:%(v2 —eP).

=1

425 (z — zj)

(38)
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» The equation for Higgs-Maxwell vortex in terms of ¢

becomes that of Liouville field, namely

N
—Ap=1 —ep—4z5(z—zj),
j=1

in the gauge Ay = 0.

(38)

» If we consider Chern-Simons term with a Higgs field,
we get CS-Higgs self-dual vortex. In that case we

manipulate the quantities analogously and find

4
—Ap—ﬁepv—ep 4252—23

Ay = :I:%(v2 —eP).
» Any solution for p(z) has the structure

= "log|z — z|* + smooth function
j=1

(41)
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Vortices and
string/gauge

e Non-abelian case: Consider non-abelian Higgs-CS .
theory defined with the combined lagrangians

R Rashior
£(A,9) = kLos + tr [ Dag(D*¢)f | — V
Hro
Acs = 5 tr (AMBVAQ + zAuAVAa> (42)
1 2

V= ﬁ ‘H(ﬁa QZ)TL(M - U2¢‘ .

Expanding explicitly on the generators of the gauge

group, ¢ = ¢*E, we find

_ 1 a % b2 2 a _ av Non-abelian generalization
V_ﬁ¢(v _Cba|¢|) ) DaDQb—@
k

§€uaﬁFaﬂ = —iJH, JH =i <[Du¢7 ¢T] - [¢7 (Du¢)T]> '



The setup in the non-abelian case uses Vortices and

string/gauge
A= Aadxo‘; A, = _iAgTa; ¢ = (Z)aEa’ (43) corretsh:c?rmence
H. Dimov and
where T, :the generators of the gauge group, E,: the RLC Rashkov
simple roots generators, A% € R, ¢* € C, a set of zeroes
of ¢, {z1,...,2n,} Where N, € N. For the non-abelian

generalization:

P =¢e =17, a=1,...,1; ¢f = Arg(z — 27).

N
1
Crad] =+ | 502pa+ 1) ¢
j=1

Non-abelian generalization
N
1
b
CbaAQ = 3F §8lpa - 82 E 90?
Jj=1

CopAS = :I:% (1)2 — Cbaepb) .



In these notations the self-dual vortex equations become pollecleig

string/gauge
theory
4 N correspondence
“ApS — ()2 Po _ Pb pc\ _ _ .a H. Dimov and
Ap® = 12 (v Chat Crae??Coupe ) 47 o(z zj). i Qv and

J=1
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In these notations the self-dual vortex equations become pollecleig

string/gauge
theory
4 N correspondence
AP — = (2 Po _ Pb pc) _ _ ,a H. Dimov and
Ap* = — (v Chat Chae”Cope ) 47r§ o(z zj). i Qv and
k

§—1

» Specializing to SU(n + 1) we get Toda lattice system
coupled to SU(n + 1) Cartan matrix Cyp.
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“ApS — ()2 Po _ Pb pc) _ Z _ .0 H. Dimov and
Ap® = 5 (v Chat Crae??Coupe ) 47 o(z zj). i Qv and
k

J=1

» Specializing to SU(n + 1) we get Toda lattice system
coupled to SU(n + 1) Cartan matrix Cjp.

Conclusions:
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In these notations the self-dual vortex equations become

N

4

—Ap" = = (1°Chae? — CracCope?) — 4 > 8(2 — 24).
j=1

» Specializing to SU(n + 1) we get Toda lattice system
coupled to SU(n + 1) Cartan matrix Cjp.

Conclusions:

» In this talk we report on the construction of
non-abelian vortices in ABJM theory.
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In these notations the self-dual vortex equations become

N
—Ap® = % (U2Cba6pb - Cbaepbccbepc) —dm Z o(z — Z;-l).

J=1

» Specializing to SU(n + 1) we get Toda lattice system
coupled to SU(n + 1) Cartan matrix Cjp.

Conclusions:

» In this talk we report on the construction of
non-abelian vortices in ABJM theory.

» On string side we give the embedding of the brane
construction of non-abelian vortices in ABJM theory.
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In these notations the self-dual vortex equations become

N

4
—Ap® = 2 (U2Cba6pb - Cbaepbccbepc) —dm Z o(z — Z;-l).

J=1

» Specializing to SU(n + 1) we get Toda lattice system
coupled to SU(n + 1) Cartan matrix Cjp.

Conclusions:

» In this talk we report on the construction of
non-abelian vortices in ABJM theory.

» On string side we give the embedding of the brane
construction of non-abelian vortices in ABJM theory.

» We have explicitly shown the connection with Toda
integrable system.
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Some general comments

1. AdS/CFT correspondence:
In all regimes AdS/CFT provides an excellent
laboratory for studying wide variety of problems of
the fundamental Physics.
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1. AdS/CFT correspondence: cortespondence
In all regimes AdS/CFT provides an excellent H. Dimov and

laboratory for studying wide variety of problems of ALCRastioy

the fundamental Physics.

» Gauge theories at strong coupling: a) spectacular
developments in understanding large classes of
gauge theories (anomalous dimensions, correlation
functions); b) developing holographic meson
spectroscopy for large class theories; b) QFT at finite
temperature;
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Some general comments

1. AdS/CFT correspondence:
In all regimes AdS/CFT provides an excellent
laboratory for studying wide variety of problems of
the fundamental Physics.

» Gauge theories at strong coupling: a) spectacular
developments in understanding large classes of
gauge theories (anomalous dimensions, correlation
functions); b) developing holographic meson
spectroscopy for large class theories; b) QFT at finite
temperature;

» AdS/QCD program: a) there is big progress in
studying important features in QCD, in particular
heavy ion phenomenology; b) applying this
philosophy to quantum chromodynamics has led to
the fruitful synthesis of lattice QCD and heavy ion
phenomenology with gauge/string duality via the
AdS/QCD program;
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Some general comments

1. AdS/CFT correspondence:
In all regimes AdS/CFT provides an excellent
laboratory for studying wide variety of problems of
the fundamental Physics.

» Gauge theories at strong coupling: a) spectacular
developments in understanding large classes of
gauge theories (anomalous dimensions, correlation
functions); b) developing holographic meson
spectroscopy for large class theories; b) QFT at finite
temperature;

» AdS/QCD program: a) there is big progress in
studying important features in QCD, in particular
heavy ion phenomenology; b) applying this
philosophy to quantum chromodynamics has led to
the fruitful synthesis of lattice QCD and heavy ion
phenomenology with gauge/string duality via the
AdS/QCD program;

» AdS/Condense Matter theory - superfluidity;
transport coefficients; strongly correlated systems via
holography;
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2. Brane engineering (and AGT conjecture).
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2. Brane engineering (and AGT conjecture).
» Construction of large class N' = 2 exactly solvable
theories. Understanding of quivers, computation of
important indices etc;

Vortices and
string/gauge
theory
correspondence

H. Dimov and
R.C.Rashkov

Final comments



2. Brane engineering (and AGT conjecture).

» Construction of large class N' = 2 exactly solvable
theories. Understanding of quivers, computation of
important indices etc;

» Engineering of ' = 2 QDC-like theories;

Vortices and
string/gauge
theory
correspondence

H. Dimov and
R.C.Rashkov

Final comments
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2. Brane engineering (and AGT conjecture).

» Construction of large class N' = 2 exactly solvable
theories. Understanding of quivers, computation of
important indices etc;

» Engineering of ' = 2 QDC-like theories;

» Construction of theories with realistic Yukawa
couplings;

3. Higher spin theories:

» Understanding Higher spin theories and their

applications;

4. Black holes - -- Cosmology - - -

Vortices and
string/gauge
theory
correspondence

H. Dimov and
R.C.Rashkov

Final comments



Vortices and
string/gauge
theory
correspondence

H. Dimov and
R.C.Rashkov

Final comments



	Low energy limit of string theory
	Closed strings
	Open strings

	AdS/CFT correspondence
	Branes and their sources
	Gauge theories on Dp brane
	AdS/CFT conjecture

	Non-abelian vortices
	Relation to Toda theories

	Final comments

