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Invariant differential operators play very
important role in the description of phys-
ical symmetries - starting from the early
occurrences in the Maxwell, d'Allembert,
Dirac, equations, to the latest applica-
tions of (super-)differential operators
in conformal field theory, supergravity
and string theory. Thus, it Is impor-
tant for the applications in physics to

study systematically such operators.

In a recent paper we started the sys-
tematic explicit construction of invari-

ant differential operators. We gave an



explicit description of the building blocks,
namely, the parabolic subgroups and
subalgebras from which the necessary
representations are induced. Thus we
have set the stage for study of different

non-compact groups.

Since the study and description of de-
tailed classification should be done group
by group we had to decide which groups
to study. One first choice would be
non-compact groups that have discrete
series of representations. By the Harish-

Chandra criterion these are groups where



holds:
rank G = rank K,

where K is the maximal compact sub-
group of the non-compact group .
Another formulation is to say that the
Lie algebra G of G has a compact Car-

tan subalgebra.

Example: the groups SO(p, g) have dis-
crete series, except when both p,qg are

odd numbers.



This class is rather big, thus, we de-

cided to consider a subclass, namely,

the class of Hermitian symmetric spaces.
T he practical criterion is that in these

cases, the maximal compact subalge-

bra K is of the form:

K = so(2)a K’
The Lie algebras from this class are:
so(n,2), sp(n,R), su(m,n),
s0"(2n), FEg(_14), E7(_25)
These groups/algebras have highest /lowest

weight representations, and relatedly holo-
morphic discrete series representations.



The most widely used of these alge-
bras are the conformal algebras so(n,2) in
n-dimensional Minkowski space-time.

In that case, there is a maximal Bruhat
decomposition that has direct physical

meaning:

so(n,2) = Mo AON BN,

M = so(ln—1,1), dmA=1,

dimN =dimN =n
where so(n—1,1) is the Lorentz alge-
bra of n-dimensional Minkowski space-
time, the subalgebra A = so(1,1) rep-

resents the dilatations, the conjugated



subalgebras N, N/ are the algebras
of translations, and special conformal
transformations, both being isomorphic

to n-dimensional Minkowski space-time.

The subalgebra P = M & A & N
(2 M ADN) isa maximal parabolic

subalgebra.



T here are other special features of the
conformal algebra which are important.
In particular, the complexification of
the maximal compact subalgebra is iso-
morphic to the complexification of the
first two factors of the Bruhat decom-

position:

/CC

so(n,C) ®so(2,C) =

~ so(n—1,1)C@s0(1,1)¢ = MCa A"



In particular, the coincidence of the
complexification of the semi-simple sub-

algebras:
IC/(C — M(C (*)

means that the sets of finite-dimensional
(nonunitary) representations of M are
in 1-to-1 correspondence with the finite-
dimensional (unitary) representations of
K.

It turns out that some of the hermitian-
symmetric algebras share the above-

mentioned special properties of so(n, 2).



This subclass consists of:

so(n,2), sp(n,R), su(n,n),

SO*(4’n), E7(_25)

In view of applications to physics, we
proposed to call these algebras 'confor-

mal Lie algebras’, (or groups).

We have started the study of all alge-
bras in the above class in the frame-
work of the present approach, and we

have considered also the algebra Eg(_14).



Lately, we discovered an efficient way
to extend our considerations beyond
this class introducing the notion of
'parabolically related non-compact

semisimple Lie algebras’ [D].



e Definition: Let G,G' be two non-
compact semisimple Lie algebras with
the same complexification g¢ = g/C.
We call them parabolically related if
they have parabolic subalgebras P =
MPABN, P =MaeaA®N, such
that: MC =2 MC (= pPL =2 POO

Certainly, there are many such parabolic
relationships for any given algebra g.
Furthermore, two algebras G,G" may
be parabolically related with different

parabolic subalgebras.



We summarize the algebras paraboli-
cally related to conformal Lie algebras
with maximal parabolics fulfilling () in
the following table [D]:



Table of conformal Lie algebras (CLA) G with M-factor fulfilling (x)
and the corresponding parabolically related algebras G’

g K M g M
dim V
so(n,2) so(n) so(n—1,1)| so(p,q), so(p—1,q—1)
n=3 ptqg=
n =n+2
su(n,n) su(n) ® su(n) | sl(n,C)r sl(2n,R) sl(n,R) @ sl(n,R)
n>3
n? su*(2n), n = 2k su*(2k) ® su*(2k)
sp(2r, R) su(2r) sl(2r,R) sp(r,r) su*(2r)
rank = 2r > 4
r(2r+1)
s0*(4n) su(2n) su*(2n) so(2n,2n) sl(2n,R)
n>3
n(2n — 1)
Eq(_a5) €6 Eg(_26) Eqry Es(6)
27
below not CLA !
Eﬁ(_14) 80(10) SU(5, 1) E6(6) 51(6, ]R)
21 EG(Q) su(3, 3)




Conformal algebras so(n,2) and

parabolically related

Let G = so(n,2), n > 2. We label the

signature of the ERs of G as follows:

X = {ni,...,nz;c},
n; €Z/2, c=d—7%5, EE[%],

|n1|<n2<---<nﬁ, n even

,

O<n1<n2<---<nﬁ, n odd ,

where the last entry of x Ilabels the
characters of A, and the first h en-
tries are labels of the finite-dimensional

nonunitary irreps of M = so(n —1,1).



T he reason to use the parameter c¢ in-
stead of d is that the parametrization
of the ERs in the multiplets is given in

a simple intuitive way:

X% = {enl,...,nﬁ;:lznﬁ_|_1},
ny < nﬁ—l—l ;
X% = {eni1,...,n5_1, ng 41 +n;z }
X:,jf = denq,... M, ooV +ny 4}
X;T {en1,n3,..., ng, ng 41 +no}
Xl”zi—l—l = {enp,..., ng, ngyq; +nq}

+ | n even
€ —
1, n odd



Further, we denote by C"'i:t the repre-

sentation space with signature X@:-t-

The number of ERs in the correspond-

ing multiplets is equal to:
WG, HO/ W (ME,HE)| = 2(1+hR)

where H® HC are Cartan subalgebras
of Gt ME, resp.

At this moment we show the simplest
example for the most common confor-
mal group in 4-dimensional Minkowski

space-time so(4,2).



E (A 4]

Simplest example of diagram with conformal invariant operators
(arrows are differential operators, dashed arrows are integral operators)

Oy = % , A, electromagnetic potential, 0,¢ = A,
F' electromagnetic field, OpA, = OhA, — 0, Ay = F\,

J,, electromagnetic current, O*Fy, = J,, O*J, = ®



0, o

h

N / / +
F[M] ! ! F[ML]

More precise showing of the simplest example
F = F* @ F~ electromagnetic field

ds, d3 linear invariant operators



pUn pUn

dy d

N — — A

prn

Y

"— "4+
APV n s s Apl/n

The general classification of conformal invariant operators
p,v,n are three natural numbers
the shown simplest case is when p=v=n=1
d} 1is a linear differential operator of order v, similarly dy’, d, d



A+

pvn

Alternative showing of the conformal invariant operators -
- showing only the differential operators

The integral operators are assumed as symmetry w.r.t. the bullet in the centre.



!/
dn—1 h—1

dp, dp dny1 | dp

A

— -~
h+1 Ay

The general classification of conformal invariant operators in 2h-dimensional space-time.
By parabolic relation the diagram above is valid for all algebras so(p,q), p+q=2h+2.



Alternative showing of the conformal invariant operators in 2h-dimensional space-time



d, d,
A5 Ay

ds d,

dh—l ;171

Ay, Ay,

d, d,
M dy,

Ay " A

The general classification of conformal invariant operators in 2h + 1 dimensional space-time.
By parabolic relation the diagram above is valid for all algebras so(p,q), p+q=2h+ 3.



dp,

Ah+1

dh1

+
A}H»l

!
h

Ay

Alternative showing of the conformal invariant operators in 2k + 1 dimensional space-time



The ERs in the multiplet are related
by intertwining integral and differen-
tial operators. The integral operators
were introduced by Knapp and Stein.
They correspond to elements of the re-
stricted Weyl group of §g. These oper-

ators intertwine the pairs (i

~

GE : CF—CF, i =1,...,1+h

(]

The intertwining differential operators
correspond to non-compact positive roots
of the root system of so(n+ 2,C), cf.

[D]. [In the current context, compact



roots of so(n+ 2,C) are those that are
roots also of the subalgebra so(n,C),

the rest of the roots are non-compact.]



Matters are arranged so that in ev-
ery multiplet only the ER with signha-
ture x; contains a finite-dimensional
nonunitary subrepresentation in a sub-
space &. The latter corresponds to
the finite-dimensional unitary irrep of
so(n + 2) with signature

{n1,..., ng, nﬁ+1}. The subspace £ is
annihilated by the operator G+, and

IS the image of the operator Gy .



Although the diagrams are valid for
arbitrary so(p,q) (p + g > 5) the con-
tents is very different. We comment
only on the ER with signature Xf_- In
all cases it contains an UIR of so(p, q)
realized on an invariant subspace D of
the ER Xii_- ‘That subspace is annihi-
lated by the operator G, , and is the
image of the operator G . (Other

ERs contain more UIRS.)

If pg € 2N the mentioned UIR is a
discrete series representation. (Other

ERs contain more discrete series UIRS.)



And if g =2 the invariant subspace
D is the direct sum of two subspaces
D = DT @D, in which are realized a
holomorphic discrete series representa-
tion and its conjugate anti-holomorphic
discrete series representation, resp. Note
that the corresponding lowest weight
GVM is infinitesimally equivalent only
to the holomorphic discrete series, while
the conjugate highest weight GVM s
infinitesimally equivalent to the anti-

holomorphic discrete series.



Above we restricted to n > 2.

The case n =2 is reduced to n =
1 since so0(2,2) = so0(1,2) @ so(1,2).
The case so(1,2) is special and must
be treated separately. But in fact, it
IS contained in what we presented al-
ready. In that case the multiplets con-
tain only two ERs which may be de-
picted by the top pair X% in both pic-
tures that we presented. And they have
the properties that we described. That
case was the first given already in 1947
independently by Bargmann and Gel’'fand

et al.



The Lie algebra su(n,n) and parabol-

ically related

Let G = su(n,n), n>2. The maxi-
mal compact subgroup is K = u(l) @
su(n) & su(n), while M = sl(n,C)p.
The number of ERs in the correspond-

iIng multiplets is equal to

C ,,C C ,,C 2n
WS KO IWMEHS = ()
The signature of the ERs of ¢ is:

X = {ni,...,0p_1,Np41 ..., N1, C}
ni €N, c=d—-n



The Knapp—Stein restricted Weyl re-

flection is given by:

GKS:CX—>C’

x'
X/:{(TL]_, N 7y I nn_l_]_, c .. 7n2n—1)*; —C}
(M1 e oy My 15 Mppd1y e -y M2 1) =
(nn‘|‘17 vy MO —1,M1, - - - 7nn—]_)

Below we give the diagrams for su(n,n)
for n = 2,3,4. These are diagrams
also for the parabolically related sl(2n,R)
and for n = 2k these are diagrams also

for the parabolically related su*(4k) [D].



We only have to to take into account
that the latter two algebras do not have

discrete series representations.

We use the following conventions. Each
intertwining differential operator is rep-
resented by an arrow accompanied by a
symbol ¢; p encoding theroot §; x and
the number mg. . which encode the re-
ducibility of the corresponding Verma

module.



Pseudo-unitary symmetry su(3,3)

Pseudo-unitary symmetry su(n,n) is similar to conformal symmetry
in n? dimensional space, for n = 2 coincides with conformal 4-dimensional case.

By parabolic relation the su(3,3) diagram above is valid also for sl(6, R).



Pseudo-unitary symmetry su(4,4)

(By parabolic relation the diagram above is valid also for si(8, R) and su*(8).)



The Lie algebras sp(n,R) and

sp(4.4) (n—even)

Let n>2. Let G = sp(n,R), the
split real form of sp(n,C) = G¢. The
maximal compact subgroup is K =
u(1l)Pdsu(n), while M = sl(n,R). The
number of ERs in the corresponding

multiplets is:
W (G HO) / IWMEHS)| = 2"
The signature of the ERs of ¢ is:

X = {nl,...,nn_l;c}, TLJ'EN,



The Knapp-Stein Weyl reflection acts
as follows:

GKS : CX — CX”
X/ — {(nlw"?nn—l)*; _C}a

(n1,...,np_1)" = (Mp_1,...,n1)

Below we give pictorially the multi-
plets for sp(n,R) for n=2,3,4,5,6.
For mn = 2r these are also multi-
plets for sp(r,r), r =1,2,3 [D]. We
only have to to take into account that
the latter algebra has discrete series
representations but not highest/lowest

weight representations.



299
A~

[ ] 112
AT
211
A+

Simplest symplectic symmetry coinciding with 3-dimensional conformal case.

By parabolic relation the diagram above is valid
for sp(2, R) = so0(3,2) and sp(1,1) = so(4,1).



Main multiplets for Sp(3, IR)



Main multiplets for Sp(4, IR) and Sp(2,2)



Ag

Main multiplets for Sp(5, IR)



Main multiplets for Sp(6,R) and Sp(3,3)



The Lie algebra so*(12)

The Lie algebra G = so*(2n) is given
by:

so™(2n) {X € so(2n,C) : JoCX = X JyC}

{X: (_ag g) | a,bEgl(n,(C),

ta = —a, bT:b}.

dimp G =n(2n — 1), rankG = n.

The maximal compact subalgebra is
K = u(n). Thus, G = so™(2n) has dis-
crete series representations and high-
est/lowest weight representations. The
split rank is r = [n/2].



T he maximal parabolic subalgebras have

M-factors as follows [D]:

M;nax = 50" (2n —4j5) ®su(27) ,

17 =1,...,r.

For even n = 2r we choose a max-
imal parabolic P = MAN such that
A= s0(l1,1), M = MM = su*(n).

We note also that
K€ 2 uw(DCqsi(n,C) 2 A MC

Thus, with this choice we utilize the

property which distinguishes the class



of 'conformal Lie algebras’ to which

class the algebras so*(4r) belong.

Further we restrict to our case of study
G = s0%(12).

We label the signature of the ERs of

g as follows:

X = {ni,np2,n3,ng,ns5,;ct,

— 15
nj€sly , c=d-—-5

where the last entry of x Ilabels the
characters of A, and the first five en-

tries are labels of the finite-dimensional



(nonunitary) irreps of M = su™(6) when
all n; > 0 or limits of the latter when

some n; = 0.

Below we shall use the following con-
jugation on the finite-dimensional en-

tries of the signature:

(n17n27n37n47n5)* = (n57n47n37n27n1) .

The ERs in the multiplet are related
also by intertwining integral operators

introduced in [KnSt]. These operators



are defined for any ER, the general ac-

tion being:

GKS : CX — CX/’
x = {n1,...,n5; c},

X/ — {(?’L]_,...,’n5)*; _C}'

Further, we give the correspondence
between the signatures xy and the high-
est weight A. The connection is through
the Dynkin labels:

m; = (N p,a)) = (AMpag), i=1,...



where A = A(x), p is half the sum of
the positive roots of GC. The explicit

connection is:

ng — My,
—3(m1 4 2mp + 3mz + 4my +
+2ms + 3meg)

C

Finally, we remind that according to
[D] the above considerations are appli-
cable also for the algebra so(6,6) with
parabolic M-factor si(6,R).

The main multiplets are in 1-to-1 cor-
respondence with the finite-dimensional



irreps of so*(12), i.e., they are labelled
by the six positive Dynkin labels m; €
N.

The number of ERS/GVMs in the cor-

responding multiplets is [D]:

W (G, HO)| /W (KE, HE)| =
= [W(s0(12,C))|/|W(sl(6,C))| = 32

where “H is a Cartan subalgebra of
both ¢ and K.

T hey are given explicitly in the Figure

below. The pairs AT are symmetric



w.r.t. to the bullet in the middle of
the figure - this represents the Weyl
symmetry realized by the Knapp-Stein

operators

T he statements made for the ER with
signature xg In the previous cases re-
main valid also here. Also the conju-
gate ER Xé)_ contains a unitary dis-

crete series subrepresentation.

All the above is valid also for the alge-
bra so(6,6), cf. [D], however, the lat-
ter algebra does not have highest /lowest

weight representations.



656
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Fig. 1. SO*(12) main multiplets



The Lie algebras E7(_25) and E7(7)

Let § = E7(_25). The maximal com-
pact subgroup is K = eg @ so(2), while

T he signatures of the ERs of G are:
x = {n1,...,n6;c}, n; €N .

The same can be used for the paraboli-
cally related exceptional Lie algebra E7 7y |l
We only have to to take into account
that the latter algebra has discrete se-

ries representations but not highest /lowest

weight representations.



217,34 617,46
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Main Type for Ez(_o5y and Frq)



The Lie algebras Lg_14), FEgg)

Let G = FEg_14)- The maximal
compact subalgebra is K = so(10) &
so(2), while M = su(5,1).

T he signature of the ERs of ¢ is:

X={n1,n3,n4,n5,n6;c}, C:d—7

The above can be used for the parabol-
ically related exceptional Lie algebras

Eesy and Egpy [D]. We only have to



to take into account that only the alge-
bra Eg(p) has discrete series represen-

tations (but not highest/lowest weight

representations).
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Main Type for Eg(_14), Fg) and Eg(z)



