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Abstract

We investigate gauge/gravity duality for gauge theories in de Sitter space.

More precisely, we study a five-dimensional consistent truncation of type IIB

supergravity, which encompasses a wide variety of gravity duals of strongly

coupled gauge theories, including the Maldacena-Nunez solution and its walk-

ing deformations. We find several solutions of the 5d theory with dS4 space-

time and nontrivial profiles for (some of) the scalars along the fifth (radial)

direction. In the process, we prove that one of the equations of motion be-

comes dependent on the others, for nontrivial warp factor. This dependence

reduces the number of field equations and, thus, turns out to be crucial for

the existence of solutions with (A)dS4 spacetime. Finally, we comment on

the implications of our dS4 solutions for building gravity duals of Glueball

Inflation.
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1 Introduction

Since the astronomical observations of [1] indicated that the expansion of the Universe

is accelerating at present, which is consistent with having a (small, but non-vanishing)

positive cosmological constant, there has been a huge interest in understanding quantum

field theory in de Sitter space [2], as well as in finding dS solutions in string compactifi-

cations with stabilized moduli [3]. However, despite recent progress in either topic, these

are still rather difficult endeavors. This has motivated a search for alternative approaches

in the vein of attempts to develop holographic descriptions of physics in de Sitter space

via proposed dS/CFT [4] or dS/dS [5] correspondences.4

4In this “dS/dS” correspondence the relation is between a dSd space and a CFT on a dSd−1 space.
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The most promising direction, though, for studying nonperturbative effects in gauge

theories living in de Sitter space is via extensions of the gauge/gravity duality, that arose

from [6, 7, 8, 9], with a curved 4d spacetime instead of a flat one. This kind of idea

was explored in [10], where a solution of type IIB supergravity with a Wick rotated RR

scalar was used.5 The ten-dimensional metric of that solution has a 4d de Sitter part,

that can be viewed as the spacetime for a certain gauge theory. The same truncation of

type IIB, with Wick rotated RR scalar, was also utilized in [13] to study more involved

4d cosmological backgrounds. However, this solution is rather peculiar, due to its reliance

on a Wick rotated 10d field.

Our goal here will be to find solutions with a dS4 spacetime within the framework of

the five-dimensional consistent truncation of type IIB, established in [14], that describes

the gravity duals of a broad class of confining gauge theories. In particular, this frame-

work encompasses the Maldacena-Nunez [15] and Klebanov-Strassler [16] solutions, which

provide gravitational duals to N = 1 SYM, as well as the more recently found solutions

[17, 18, 19], which give duals to strongly coupled gauge theories with more than one

dynamical scale.

We will study the equations of motion of the effective 5d action relevant for the con-

sistent truncation of [14]. We will show that, for a metric ansatz compatible with a 4d

cosmological constant (of either sign), there is a reduction in the number of independent

equations by one, under a certain condition. This is of crucial importance for the exis-

tence of solutions, as otherwise generically the system is overdetermined for the physically

desirable metric ansatz. We establish this result for a cosmological constant of either sign,

because AdS4 solutions in this context are in principle also of interest, for example, for

realizations of the Karch-Randall model of locally localized gravity [20]. We will not

investigate AdS4 solutions here, though.

We will find several solutions with dS4 spacetime and with only a subset of the 5d fields

having nontrivial profiles along the fifth (radial) direction. These solutions occur within

certain approximations, similar to the approximation in which the walking solution of [17]

is found. It would be interesting to understand, in the future, whether that similarity

has a deeper meaning. Finally, we will discuss the relevance of the present considerations

for Cosmological Inflation. Of course, de Sitter space is the leading approximation to

the spacetime during Inflation. But, more importantly, being able to address strongly-

5See also [11] for a holographic model of QFTs in de Sitter space, based on a dSd foliation of a

(d + 1)-dimensional asymptotically AdS space. This model was further used in [12] to study thermal

QFT properties, as well as the Schwinger effect in de Sitter space.
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coupled gauge dynamics during Inflation is of great significance for composite models

[21, 22], in which the role of the inflaton is played by a quark condensate or a glueball.

Our solutions with a dS4 spacetime could provide the starting point for building a gravity

dual of Glueball Inflation, since a slowly varying Hubble parameter (as is the case in slow

roll Inflation) can be viewed as a small time-dependent deformation around a constant

one (the latter corresponding to the pure de Sitter space).

In the next section, we review relevant material about the consistent truncation of

[14]. In Section 3, we explain our ansatz for the 5d fields, including the metric, and derive

the resulting equations of motion. Furthermore, we show that, under a certain condition,

one of those equations becomes dependent on the others and, as a result, is automatically

satisfied when they are. We also show that there is an additional consistent truncation in

the scalar sector that one can make. In Section 4, we look for solutions of the equations of

motion. In Subsection 4.1 we find analytically an explicit and rather simple solution with

a positive 4d cosmological constant. In Subsection 4.2 we show numerically that there is

an interesting class of solutions with a natural upper bound for the radial variable. In

Appendix A we investigate the allowed parameter space for those numerical solutions.

Finally, in Sections 5 and 6 we discuss the relevance of our considerations for Glueball

Inflation and summarize the results of this paper.

2 Consistent truncation to a 5d theory

We will look for solutions within the consistent truncation of type IIB to a 5d theory, found

in [14]. This set-up encompasses a variety of gravity duals of confining strongly-coupled

gauge theories including the famous Maldacena-Nunez [15] and Klebanov-Strassler [16]

N = 1 solutions, as well as their deformations [17, 18, 19] describing gauge theories with

multi-scale dynamics.

The bosonic fields of IIB supergravity are the 10d metric gAB(xM), the string dilaton

φ(xM), the RR scalar C(xM), the NS 3-form field-strength H3(xM), and the RR 3-form

F3(xM) and 5-form F5(xM) fields, where A,B,M = 0, ..., 9. The ansatz for the consistent

truncation of interest for us is the following. The metric is:

ds2
10d = e2p−xds2

5d + ex+g(ω2
1 + ω2

2) + ex−g
[
(ω̃1 + aω1)2+(ω̃2 − aω2)2

]
+ e−6p−x(ω̃3 + ω3)2 , s2

5d = gIJ dx
IdxJ , (2.1)
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where

ω̃1 = cosψdθ̃ + sinψ sin θ̃dϕ̃ , ω1 = dθ ,

ω̃2 = − sinψdθ̃ + cosψ sin θ̃dϕ̃ , ω2 = sin θdϕ ,

ω̃3 = dψ + cos θ̃dϕ̃ , ω3 = cos θdϕ . (2.2)

The RR 3-form is:

F3 = P [−(ω̃1 + b ω1) ∧ (ω̃2 − b ω2) ∧ (ω̃3 + ω3)

+ (∂Ib) dx
I∧ (−ω1 ∧ ω̃1 + ω2 ∧ ω̃2) + (1− b2)(ω1 ∧ ω2 ∧ ω̃3)

]
, (2.3)

where P = const. The remaining fields are:

φ = φ(xI) , C = 0 , H3 = 0 (2.4)

and

F5 = F5 + ?F5 , F5 = Qvol5d , Q = const . (2.5)

Finally, the quantities p, x, g, a, b, φ in the above ansatz are all functions of the 5d

coordinates xI . In other words, these are six scalars in the 5d external space. Similarly,

the 5d metric gIJ in (2.1) also depends on xI , i.e. gIJ = gIJ(xI).

Note that the full consistent truncation of [14] allows for H3 6= 0 and that is, in fact,

needed to obtain the Klebanov-Strassler solution [16]; see [14, 23]. However, it is consistent

to set the NS three form H3 = 0 and we will do so in the following for simplicity.6 This

smaller consistent truncation still encompasses the Maldacena-Nunez solution [15] and its

deformations [17, 18], which describe walking gauge theories.

Substituting (2.1)-(2.5) into the ten-dimensional IIB action and integrating out the

compact internal dimensions, parameterized by the angular coordinates θ, ϕ, θ̃, ϕ̃ and ψ,

one finds that the five-dimensional fields Φi(xI) = { p(xI), x(xI), g(xI), φ(xI), a(xI), b(xI) }
and gIJ(xI) are described by the action:

S =

∫
d5x
√
−detg

[
−R

4
+

1

2
Gij(Φ) ∂IΦ

i∂IΦi + V (Φ)

]
, (2.6)

where the sigma model metric Gij(Φ) is diagonal and has the components

Gpp = 6 , Gxx = 1 , Ggg =
1

2
, Gφφ =

1

4
, Gaa =

e−2g

2
, Gbb =

P 2eφ−2x

2
(2.7)

6We will comment more on the consistency of taking H3 = 0 later.
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and, finally, the potential V (Φ) has the form

V (Φ) = − e
2p−2x

2

[
eg + (1 + a2)e−g

]
+
e−4p−4x

8

[
e2g + (a2 − 1)2e−2g + 2a2

]
+

a2

4
e−2g+8p + P 2 e

φ−2x+8p

8

[
e2g + e−2g(a2 − 2ab+ 1)2 + 2(a− b)2

]
+ Q2 e

8p−4x

8
. (2.8)

Let us note that the equations of motion, that follow from the action (2.6), are:

∇2Φi + Gijk gIJ(∂IΦ
j)(∂JΦk)− V i = 0 ,

−RIJ + 2Gij (∂IΦ
i)(∂JΦj) +

4

3
gIJV = 0 , (2.9)

where ∇2 = ∇I∇I and V i = GijVj with Vj ≡ ∂V
∂Φj . From (2.7) it is easy to compute that

the Christoffel symbols Gijk for the metric Gij are:

Gbφb =
1

2
, Gbxb = −1 , Gaga = −1 , Ggaa = e−2g

Gφbb = −P 2eφ−2x , Gxbb =
P 2eφ−2x

2
(2.10)

with all other components vanishing.

3 Metric ansatz and field equations

In the context of the gauge/gravity duality, one can find gravitational duals of some

strongly coupled gauge theories living in Minkowski space by solving (2.9) with the metric

ansatz

ds2
5 = e2A(z)ηµνdx

µdxν + dz2 ; (3.1)

the scalars ΦI then describe glueball states in the dual gauge theory. For example, the

Maldacena-Nunez solution [15] is obtained for

Q = 0 , b = a , x =
1

2
g − 3p , φ = −6p− g − 2 lnP (3.2)

and some particular functions a = a(z), g = g(z) and p = p(z); for more details see

[14, 23].

Here, instead, we will be interested in solutions of (2.9) with a curved four-dimensional

spacetime. More precisely, we will take the 5d metric ansatz to be:

ds2
5 = e2A(z)gµνdx

µdxν + dz2 , (3.3)
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where the 4d metric gµν is de Sitter or anti-de Sitter and thus satisfies

Rµν = Λgµν with Λ = const . (3.4)

Clearly, dS4 corresponds to Λ > 0, whereas AdS4 to Λ < 0. The dS case is of great

interest because of both the Inflationary epoch in the Early Universe and the present day

accelerated expansion of the Universe. The AdS case is relevant for the Karch-Randall

model of locally localized gravity [20] and the related study of defect CFTs [24].

To be more explicit, let us write the dS4 metric as:

gµνdx
µdxν = −dt2 + e2

√
Λ
3
td~x2 (3.5)

and the AdS4 one as:

gµνdx
µdxν = e−2

√
−Λ

3
x3(−dt2 + dx2

1 + dx2
2) + dx2

3 . (3.6)

With these metric ansatze, we will look for solutions of (2.9) for some nontrivial scalar

profiles of the form

Φi = Φi(z) . (3.7)

It is easy to realize that for both cases, (3.5) and (3.6), the action of the 5d operator

∇2 = ∂I∂
I + ΓIIJ∂J has the same form:

∇2Φi = (Φi)′′ + 4A′(Φi)′ , (3.8)

where we have denoted ′ ≡ ∂z. The reason is that for every value of µ = 0, ..., 3 the 5d

Christoffel symbol components Γµµz = A′, as well as Γzzz = 0, for both (3.5) and (3.6).

Hence the scalar field equations in (2.9) are

(Φi)′′ + 4A′(Φi)′ + Gijk(Φj)′(Φk)′ −GijVj = 0 (3.9)

regardless of whether the 4d metric gµν in (3.3) is taken to be de Sitter or anti-de Sitter.

To write out explicitly the metric equations in (2.9), let us first compute the compo-

nents of the Ricci tensor. For the dS case, namely (3.3) with (3.5) substituted, we easily

find:

Rtt = −Λ + e2A
(
4A′2 + A′′

)
Rxnxn = e2

√
Λ
3
t
[
Λ− e2A

(
4A′2 + A′′2

)]
, n = 1, 2, 3

Rzz = −4A′′ − 4A′2 (3.10)
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with all other components vanishing. Using (3.10), it is easy to see that the (tt) component

of the second equation in (2.9) gives, up to an overall sign, exactly the same as the (xnxn)

components. That equation is:

− Λe−2A + 4A′2 + A′′ +
4

3
V = 0 . (3.11)

Finally, the (zz) component of (2.9) gives:

4A′′ + 4A′2 + 2Gij(Φ
i)′(Φj)′ +

4

3
V = 0 . (3.12)

For the AdS case, i.e. (3.3) with (3.6) substituted, the Ricci tensor components are

somewhat different:

Rtt = e−2
√
−Λ

3
x3
[
−Λ + e2A

(
4A′2 + A′′

)]
Rxnxn = e−2

√
−Λ

3
x3
[
Λ− e2A

(
4A′2 + A′′2

)]
, n = 1, 2

Rx3x3 = Λ− e2A(4A′2 + A′′2)

Rzz = −4A′′ − 4A′2 (3.13)

However, taking into account the difference in the 4d metric, this leads again exactly to

equations (3.11) and (3.12).

Summarizing, the system of field equations that we want to study is:

(Φi)′′ + 4A′(Φi)′ + Gijk(Φj)′(Φk)′ −GijVj = 0

−Λe−2A + 4A′2 + A′′ +
4

3
V = 0

4A′′ + 4A′2 + 2Gij(Φ
i)′(Φj)′ +

4

3
V = 0 . (3.14)

The difference in (3.14), between having de Sitter and anti-de Sitter gµν metrics in (3.3),

is only in the sign of the 4d cosmological constant Λ. Note that there is one more equation

in (3.14) than there are unknown functions Φi(z), A(z). So, at first sight, it is not clear

whether this system can have any solutions. However, we will show now that, in fact, one

of the equations is not independent of the others. Namely, it is automatically satisfied

whenever the rest of the equations of motion are solved.

3.1 Dependent equation of motion

Here we will show that one of the equations of motion in (3.14) is dependent on the

remaining ones. The dependent equation turns out to be one of the last two, namely one

of the metric field equations.
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For convenience, let us introduce the following notation:

E1 : (Φi)′′ + 4A′(Φi)′ + Gijk(Φj)′(Φk)′ −GijVj = 0

E2 : −Λe−2A + 4A′2 + A′′ +
4

3
V = 0

E3 : 4A′′ + 4A′2 + 2Gij(Φ
i)′(Φj)′ +

4

3
V = 0 . (3.15)

Now let us take combinations of E2 and E3 in such a way that A′′ and A′2 will appear in

separate equations. Namely, consider:

N2 ≡ E3− E2 : Λe−2A + 3A′′ + 2Gij(Φ
i)′(Φj)′ = 0 , (3.16)

N3 ≡ 4E2− E3 : −4Λe−2A + 12A′2 + 4V − 2Gij(Φ
i)′(Φj)′ = 0 .

From N2 we have:

A′′ = −1

3
Λe−2A − 2

3
Gij(Φ

i)′(Φj)′ . (3.17)

Note that, for Λ > 0, the above relation implies the condition A′′ < 0 for there to be a

solution, since Gij is diagonal and with positive components; see (2.7).

Next, let us differentiate the left hand side of N3 with respect to z:

LdN3 ≡ 8ΛA′e−2A + 24A′A′′ + 4Vi(Φ
i)′ − 2∂kGij(Φ

k)′(Φi)′(Φj)′ − 4Gij(Φ
i)′′(Φj)′ . (3.18)

Substituting (3.17) into (3.18), we find:

LdN3 = −16A′Gij(Φ
i)′(Φj)′ − 2∂kGij(Φ

k)′(Φi)′(Φj)′ + 4(Φj)′
[
Vj −Gij(Φ

i)′′
]
, (3.19)

where in the last term we have combined the third and fifth terms in (3.18) for convenience.

Now, from E1 we have:

Vj = Gij(Φ
i)′′ + 4GijA

′(Φi)′ +GijGikl(Φk)′(Φl)′ . (3.20)

Substituting this into (3.19), we are left with:

LdN3 = −2∂kGij(Φ
k)′(Φi)′(Φj)′ + 4GijGikl(Φj)′(Φk)′(Φl)′ . (3.21)

To rewrite the last term in a convenient form, note that the standard expression for the

Christoffel symbols

Gikl =
1

2
Gij (∂kGjl + ∂lGkj − ∂jGkl) , (3.22)

immediately implies:

GijGikl =
1

2
(∂kGjl + ∂lGkj − ∂jGkl) . (3.23)
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Using this, it is easy to see that the second term in (3.21) becomes:

4GijGikl(Φj)′(Φk)′(Φl)′ = 2∂kGij(Φ
i)′(Φk)′(Φj)′ . (3.24)

Hence, we finally find that

LdN3 = 0 (3.25)

identically. Note that to reach this result we relied on the assumption that A 6= const,

otherwise A′′ would not appear in (3.18). So our derivation of (3.25) is valid only for

nontrivial warp factors A(z). Clearly, if A = const the system (3.15) simplifies right

away. In fact, since Gij is diagonal, it is obvious that for A = const and Λ > 0 there is

no solution as equations E2 and E3 are incompatible.

The result (3.25) shows that, for nontrivial warp factor A, equations E1, N2 and dN3

(i.e. the derivative of N3) are not independent. We chose, for convenience, to use E1 and

N2 inside dN3, in order to obtain that dN3 is identically satisfied. However, we could

have equally well solved algebraically for A′′ from dN3, i.e. (3.18)=0, and substituted the

result in N2. The subsequent manipulations would have been the same. In other words,

we can interpret the above dependency between the field equations as the statement that

equation N2 is solved automatically, whenever equations E1 and N3 are (clearly, if N3

is satisfied, then so is dN3). Hence N2 can be dropped, leaving us with the system

(Φi)′′ + 4A′(Φi)′ + Gijk(Φj)′(Φk)′ −GijVj = 0

−4Λe−2A + 12A′2 + 4V − 2Gij(Φ
i)′(Φj)′ = 0 . (3.26)

Therefore, there are equal numbers of equations and of unknown functions. This is a

rather important statement as the metric ansatz (3.3)-(3.5)/(3.6), which we want for

physical reasons, at first sight seemed to have one function less than needed. So it seemed

that it might be (near) impossible to find solutions with that ansatz. Now, however, we

see that the number of functions is just right.

3.2 Simplification in scalar sector

The system (3.26) is still rather daunting to address in full generality. However, in this

subsection we will show that it is consistent to set three of the six scalar fields Φi(z)

to zero. The resulting simplification will be of crucial importance for finding analytic

solutions in the following.

To understand which scalars one can set to zero in the full coupled system, let us first

write down more explicitly all scalar field equations, namely:

∇2Φi + Gijk(Φj)′(Φk)′ −GijVj = 0 . (3.27)

9



Using (2.10), equations (3.27) acquire the form:

∇2p− V p = 0 ,

∇2x+ Gxbb(b′)2 − V x = 0 ,

∇2g + Ggaa(a′)2 − V g = 0 ,

∇2φ+ Gφbb(b
′)2 − V φ = 0 ,

∇2a+ Gaga g′a′ − V a = 0 ,

∇2b+ Gbφb φ′b′ + Gbxb x′b′ − V b = 0 , (3.28)

where ∇2 is as in (3.8). Now, from (2.8) one can see that all terms in V a and V b are

proportional to at least one power of a or of b. Thus, if we take a ≡ 0 and b ≡ 0, then both

the ∇2a equation and the ∇2b equation in (3.28) will be identically satisfied. Similarly,

one can find from (2.8) that V g = 0, when g = 0 and a = 0. Therefore, the ∇2g equation

of motion in (3.28) is identically satisfied when g and a vanish. Summarizing, we can

consistently set:

g = 0 , a = 0 , b = 0 (3.29)

and drop the ∇2g, ∇2a and ∇2b equations of motion.7 Then the system (3.28) reduces

to:

p′′ + 4A′p′ − V p = 0 ,

x′′ + 4A′x′ − V x = 0 ,

φ′′ + 4A′φ′ − V φ = 0 . (3.30)

Note also that, upon imposing (3.29), the last field equation in (3.26) becomes:

4Λe−2A − 12A′2 + 12p′2 + 2x′2 +
1

2
φ′2 − 4V = 0 . (3.31)

Finally, substituting (3.29) into the potential (2.8), we find:

V =
e−4p−4x

4
− e2p−2x +

e8p−2x+φ

4
P 2 +

e8p−4x

8
Q2 . (3.32)

7This is a convenient place to comment on taking H3 = 0 in the ansatz of Section 2. That this is

consistent seems well known in the literature. However, we have not seen a more detailed discussion,

like the one presented here for (3.29). So let us briefly outline why this is the case. If H3 6= 0, then

according to (3.8) of [14] there are two more independent scalars to consider, h1 and h2 in their notation.

So now Φi = {p, x, g, φ, a, b, h1, h2}. The components of the sigma model metric Gij(Φ) do not depend

on h1,2 and there are no nonzero mixed components of the form Gh1,2 Φî with Φî 6= h1,2; see (3.13) of

[14]. Hence all additional nonvanishing components of the Christoffel symbols are of the form GΦi

Φjh1,2
.

Finally, V h1,2 |h1=0=h2
= 0, as can be seen from (3.14) of [14]. So setting h1,2 = 0 satisfies the ∇2h1,2

field equations and does not change at all the considerations regarding (3.28).
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4 Solutions with dS4 spacetime

In the following, we will adopt (3.29). Thus our goal will be to solve the system (3.30)-

(3.31) with the potential as in (3.32). To gain better understanding, we would like to find

analytic solutions. For that purpose, it is rather useful to work in an approximation, in

which one of the terms in (3.32) dominates over the others.

One limit that immediately comes to mind is taking P >> 1, since in microscopic

realizations of the duality P = Nc

4
(see, for instance, [17]) with Nc being the number of

D5 branes sourcing the background. Alternatively, one could take Q >> 1, where Q is the

F5 flux due to D3 brane sources. However, there is a wider range of possibilities that may

contain more interesting examples. To explain that, let us redefine the scalars p, x, φ as:

p(z) = p̃(z) + p0 , x(z) = x̃(z) + x0 , φ(z) = φ̃(z) + φ0 , (4.1)

where p0 = const, x0 = const and φ0 = const. Then (3.32) becomes:

V =
1

N4
pN

4
x

e−4p̃−4x̃

4
−
N2
p

N2
x

e2p̃−2x̃ +
N8
pNφP

2

N2
x

e8p̃−2x̃+φ̃

4
+
N8
pQ

2

N4
x

e8p̃−4x̃

8
. (4.2)

where for convenience we have denoted

Np ≡ ep0 , Nx ≡ ex0 , Nφ ≡ eφ0 . (4.3)

Clearly then, we can pick different terms in (4.2) to be dominant by taking suitable limits

for different ratios of the constants Np, Nx, Nφ, P and Q. This is rather similar to the

walking solutions of [17]. Namely, there is an integration constant, denoted by c there,

such that the walking backgrounds are approximate solutions in the limit c
Nc
>> 1 .

4.1 Explicit solution

It turns out that a de Sitter solution (i.e. with Λ > 0), which is our primary interest, can

be found analytically in the limit in which the second term in (4.2) is dominant. Clearly,

one condition to achieve such a limit is

Np

Nx

>>
1

N2
pN

2
x

, (4.4)

which implies the constraint
1

Nx

<< N3
p . (4.5)
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Another condition, from comparing the second and third terms in (4.2), is

Np

Nx

>>
N4
pN

1/2
φ P

Nx

⇒ N3
p <<

1

N
1/2
φ P

. (4.6)

Finally, comparing the second and fourth terms, we have:

Np

Nx

>>
N4
pQ

N2
x

⇒ N3
p <<

Nx

Q
. (4.7)

To summarize, by assuming

1

Nx

<< N3
p << smaller of

{
1

N
1/2
φ P

,
Nx

Q

}
, (4.8)

we ensure that the potential (4.2) simplifies to:

V ≈ −
N2
p

N2
x

e2p̃−2x̃ . (4.9)

Let us for convenience denote N2 ≡ N2
p/N

2
x and drop the tildes from now on. So we write

(4.9) as:

V ≈ −N2 e2p−2x . (4.10)

Note that one could take either P = 0 or Q = 0 in (4.2), in which case the {, } bracket

in (4.8) simplifies in the obvious manner.

4.1.1 Reducing the scalar sector

From (4.10) we find that:

Vp ≈ −2e2p−2xN2 , Vx ≈ 2e2p−2xN2 , Vφ ≈ 0 . (4.11)

The vanishing of Vφ immediately implies that we can solve the third equation in (3.30)

by taking

φ = 0 . (4.12)

In addition, from (4.11) we see that:

Vx = −Vp , (4.13)

which upon using (2.7) gives:

V x = −6V p . (4.14)

12



It is clear then that, by taking

x = −6p , (4.15)

we can ensure that the field equation x′′ + 4A′x′ − V x = 0 becomes exactly the same as

p′′ + 4A′p′ − V p = 0. So, adopting (4.15), we reduce the system to a single scalar p(z)

with the potential V = −N2e14p.

4.1.2 Solving the field equations

Substituting (4.12) and (4.15) into (3.30)-(3.31), we obtain the system:

p′′ + 4A′p′ +
N2

3
e14p = 0

4Λe−2A − 12A′2 + 84p′2 + 4N2e14p = 0 . (4.16)

We will leave for the future solving the above system (analytically) in full generality and,

instead, will find here a particular solution of a rather simple form. To do that note that

there are only two kinds of exponentials, e−2A and e14p, in this system. So it seems logical

to expect that it may be possible to find a solution of (4.16), when those two exponentials

are equal to each other up to a constant. Hence, let us make the ansatz:

A(z) = −7p(z) + c0 , (4.17)

where c0 = const. Substituting (4.17) into (4.16), we find:

p′′ − 28p′2 +
N2

3
e14p = 0(

4Λ

e2c0
+ 4N2

)
e14p − 504 p′2 = 0 . (4.18)

Let us for convenience introduce the notation

α =
4Λ

e2c0
+ 4N2 and β = 504 , (4.19)

so that the second equation in (4.18) can be written as:

α e14p − β p′2 = 0 . (4.20)

Solving this algebraically for e14p in terms of p′2 and substituting the result in the first

equation of (4.18), we find:

p′′ − γ p′2 = 0 , (4.21)

13



where we have denoted

γ = 28− N2

3

β

α
. (4.22)

Now the system we need to solve is (4.20)-(4.21). The question is whether we can choose

the integration constants so that both equations are satisfied simultaneously.

The general solution of (4.20) is:

p1(z) =
1

14
ln

[
β

49α (z − C1)2

]
, (4.23)

where C1 is an integration constant. For later convenience, let us write this as:

p1(z) = − 1

14

[
ln

(
49α

β

)
+ 2 ln(z − C1)

]
. (4.24)

The general solution of (4.21) is:

p2(z) = −1

γ
ln(γzC2 + γC3) , (4.25)

where C2 and C3 are integration constants. Since the latter are arbitrary, we can rescale

them by another constant κ and write:

p2(z) = −1

γ
[ ln(γκ) + ln(zC2 + C3) ] . (4.26)

Let us now compare (4.26) to (4.24). Clearly, the two expressions can be made equal if

we take:

C2 = 1 , C3 = −C1 ≡ C , γ = 7 , κ =

(
α

β

)1/2

. (4.27)

However, unlike C1,2,3 and κ, which until (4.27) were arbitrary, γ was already given in

(4.22). So we need to satisfy one more condition, namely:

7 = 28− N2

3

β

α
, (4.28)

in order to have a solution. Substituting the definitions of α and β from (4.19), the

relation (4.28) becomes:

Λ = e2c0N2 . (4.29)

Clearly, this condition means that Λ is positive-definite and thus the 4d spacetime is de

Sitter.
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4.1.3 Summary and discussion

To summarize, we have found the solution:

p(z) = −1

7
ln(z + C)− 1

14
ln

(
7N2

9

)
,

A(z) = ln(z + C) +
1

2
ln

(
7Λ

9

)
, (4.30)

where in the constant term of A we have combined the constant coming from p(z) with

the contribution of c0 as determined by (4.29). One can easily verify that this solution is

indeed correct by substituting (4.30) into (4.16), or equivalently into (3.15) with g = 0,

a = 0, b = 0, φ = 0, x = −6p and V = −N2e14p.

Recall that in this set-up z is a radial variable with a natural range [0,∞). Clearly,

by choosing the integration constant C > 0, we can ensure that the solution is regular

at the origin z = 0. Obviously, though, the expressions in (4.30) diverge as z tends

to ∞. However, in physical applications it may be sensible to introduce an upper cut-

off zc, such that z ∈ [0, zc]. This could be a (dynamical) physical scale above which

the model, based on the above solution, is not valid. For example, if we view the dS4

background corresponding to the solution (4.30) as an approximation to the Inflationary

epoch in the Early Universe, then a natural choice for zc is the scale of onset of Inflation, or

perhaps the Hubble scale. Of course, when studying fluctuations in the above background,

perturbative stability will depend on the boundary conditions one imposes at zc. We leave

this very interesting issue for a future investigation.

Finally, let us comment on whether (4.30) is valid in the approximations within which

we derived it, as should be the case. Such a question may arise at first sight, because

the solution for p(z), and thus also for x(z), depends on N , which could be large. Since

the dominance of the second term in (4.2) was obtained by imposing constraints on the

coefficients Np,x,φ only, it is natural to ask whether factors of N coming from the exponen-

tials of p(z) and x(z) could spoil this approximation. Fortunately, one can easily verify

that this does not happen. Indeed, in the first term in (4.2) we have8: e−4p−4x|x=−6p =

e20p ∼ 1
N20/7 = 1

N2.857 ; in the second term: e2p−2x|x=−6p = e14p ∼ 1
N2 ; in the third one:

e8p−2x|x=−6p = e20p ∼ 1
N2.857 ; and, finally, in the fourth term: e8p−4x|x=−6p = e32p ∼ 1

N4.57 .

So even among the exponentials alone, for large N , the exponential of the second term

dominates when we have (4.30) and (4.15). Hence this is a valid solution.

8As before, we drop the tildes.
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4.2 Solutions for large P

The kind of reduction of the scalar sector to a single independent field, that we found in

Subsection 4.1.1, is not unique to the limit in which the second term in (4.2) dominates.

In fact, a similar reduction can be obtained for any of the four terms of the potential

being the leading one. Despite that, we did not find three more analogues of the solution

(4.30). It is instructive to understand why. So, following Section 4.1, we will outline the

relevant considerations for the case of another leading term in (4.2).

Let us take the approximation

V ≈ e8p−2x+φ

4
P 2 , (4.31)

where as before we have dropped the tildes. Clearly, the simplest, although certainly not

the only, way to ensure (4.31) is to take

P >> 1 , Q = 0 (4.32)

and Np,x,φ ∼ O(1) in (4.2). Note that any overall N factor in (4.31) just rescales the

parameter P . So, for our purposes, there is no loss of generality by not including such a

factor in the potential here.

As in Section 4.1, from (4.31) we can deduce that setting

x = −1

2
φ (4.33)

makes the equations of motion of x and φ equivalent. As a result, we are left with the

following scalar field equations:

∇2φ = e8p+2φP 2 , ∇2p =
1

3
e8p+2φP 2 . (4.34)

Adding and subtracting these two equations, we find

∇2 (8p+ 2φ) =
14

3
e8p+2φP 2 and ∇2 (φ− 3p) = 0 . (4.35)

Obviously, the second equation above can be solved by taking

φ = 3p . (4.36)

Hence, the system (3.30)-(3.31) now becomes:

p′′ + 4A′p′ − 1

3
e14pP 2 = 0

4Λe−2A − 12A′2 + 21p′2 − e14pP 2 = 0 . (4.37)
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At this stage, one could make the ansatz

A(z) = −7p(z) + const , (4.38)

as in (4.17). However then, going through the same steps as in Subsection 4.1.2, one finds

that the analogue of the last condition, i.e. equation (4.28), cannot be satisfied. The same

problem occurs for the limits, in which any of the remaining two terms in (4.2), i.e. the

first or the last, is the dominant one.

To understand what is the key difference that allowed the existence of the solution

(4.30), let us compare (4.16) and (4.37). We see that both systems are of the form:

p′′ + 4A′p′ − η ω L2e ζ p = 0

4Λe−2A − 12A′2 + ξp′2 − 3 η L2e ζ p = 0 , (4.39)

where η, ζ, ξ and ω are numerical coefficients and the parameter L denotes N or P . In

fact, the coefficient ξ has to satisfy ξ = 3ζ
2ω

due to its origin from the system (3.15). Now,

substituting the ansatz A(z) = − ζ
2
p(z) + c0 in (4.39) and performing the same steps as

in Subsection 4.1.2, we find again the system αe ζ p−βp′2 = 0 and p′′− γp′2 = 0, but with

different coefficients α, β and γ; in particular:

α ≡ 4Λ

e2c0
− 3 ηL2 . (4.40)

Finally, the analogue of (4.29) gives:

Λ =
(2− ζω) η e2c0L2

2
. (4.41)

When the potential is approximated by any of the other terms, except for the second one

in (4.2), it turns out that we always have 2 < ζω with η > 0, and also β > 0. This would

seem to suggest that there is a solution with Λ < 0, i.e. AdS4 spacetime. However, (4.41)

was derived under the assumption that αe ζ p − βp′2 = 0 has a solution, which for β > 0

is only possible if α > 0. The latter inequality, though, cannot be satisfied for Λ < 0,

since η > 0. The crucial difference for the second term in (4.2), compared to the above

considerations, is its overall minus sign. This leads to η < 0, while still 2 < ζω. So now

one can have Λ > 0 from (4.41), while α > 0. This gives precisely the solution (4.30).

Although the system (4.37) does not have a special solution similar to (4.30), we

can still extract certain information analytically. This will enable us to find a class of

interesting numerical solutions to (4.37). We turn to these considerations next.
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4.2.1 Reduction to single equation

Since our main interest is in de Sitter space, we would like to look for solutions with

Λ > 0. So let us for convenience introduce the Hubble parameter:

H2 ≡ Λ

3
, (4.42)

such that the scale factor in (3.5) becomes the standard eHt.

Now, we can rewrite the system (4.37) in a more convenient form by introducing B(z)

and q(z) via:

A(z) = ln

(
H

B(z)

)
and p(z) =

1

7
ln

(
q(z)

P

)
. (4.43)

Then (4.37) becomes:

q′′

q2 q′
=

q′

q3
+

7 q

3 q′
+

4B′

q2B
,

3 q′2

7 q2
=

12B′2

B2
+ q2 − 12B2 . (4.44)

Clearly, from the first equation above we can solve algebraically for B′

B
and substitute the

result in the second equation. This allows us to solve for B:

B =
1

2
√

3

√
(7 q4 + 3 q′2 − 3 q q′′)2

12 q2 q′2
+ q2 − 3 q′2

7 q2
. (4.45)

Now, substituting (4.45) into the first equation of (4.44), we obtain a third order factorized

differential equation for q of the form F1 × F2 = 0, where

F1 : q′′ =
q′2

q
+

7

3
q3,

F2 : q′′′ =
49 q6

36 q′
+

17

2
q2 q′ − 9 q′3

28 q2
− 7 q3 q′′

2 q′
+
q′ q′′

2 q
+

5 q′′2

4 q′
. (4.46)

So we have reduced solving the coupled system of differential equations (4.37) to solving

either of the ODEs F1 and F2.

Actually, F1 can be solved easily, giving:

q(z) =

√
3

7

C1

sin [(z + C2)C1]
(4.47)

with C1,2 being integration constants. Now, substituting (4.47) into (4.45), we find:

B =
C1

2
√

7
. (4.48)
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Hence, from (4.43) it follows that the warp factor A is constant. However, recall from

Section 3.1 that there is no solution for Λ > 0 and A = const. Indeed, one can verify

that the third equation (i.e. N2 in (3.16), which for A = const is independent of the

other two) is not satisfied for the putative solution given by (4.47) and (4.48). Therefore,

solving the system (4.37) reduces to solving the single equation F2 in (4.46).

4.2.2 Investigating the solutions

Since the differential equation F2 does not depend explicitly on z and is an odd function of

q and its derivatives, we can reduce its order by one via introducing the new independent

variable y = q(z) and the new function R(y) = q′(z)2. Then F2 becomes:9

R′′ = 17 y2 +
49 y6

18R
− 9R

14 y2
+
R′

2 y
− 7 y3R′

2R
+

5R′2

8R
. (4.49)

One can further simplify this equation by making the ansatz

R =
49

9
y4 [1 + T (ln y)] , (4.50)

where T is an yet undetermined function. Substituting (4.50) into (4.49), we find the

following equation for T (w):

(1 + T )T ′′ =
5

8
T ′2 − 36

49
T − 9

14
T 2 − 15

7
T ′ − 3

2
T T ′ . (4.51)

Note that this equation is invariant under a translation w → w − w0 with w0 being a

constant. Since, according to (4.50), one has w = log(q), the w translation is equivalent

to a q rescaling of the form q → q / q0 with q0 = ew0 . In fact, it is useful to rewrite (4.50)

as:

q′(z) = ±7

3
q2
√

1 + T , (4.52)

where we have used that y = q and R = q′2. Now it is easy to realize that a rescaling

q → q / q0 leaves (4.52) invariant, if it is accompanied by the transformation z → z q0. In

other words, equations (4.51) and (4.52) are invariant under the simultaneous rescalings:

q → q / q0 ≡ q̂ and z → z q0 ≡ ẑ . (4.53)

Hence, one can generate new solutions q̂(ẑ) by performing these rescalings on a known

solution q(z). This will play an important role below.

9To verify this result, keep in mind that dy
dz = q′ and that R′ = dR

dy .
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Let us now focus on investigating equation (4.51). Unfortunately, it cannot be solved

exactly by analytical means. Nevertheless, we will be able to find numerical solutions.

As a first step in doing that, we need the series expansion of T around some point, which

we choose for convenience to be w = 0. To simplify the considerations, we will look

for solutions, such that the function T (w) has a zero somewhere.10 This assumption

implies that the Taylor expansion in our case has the form T (w) = t1w + t2w
2 + ... with

t1,2 = const. Indeed, the generic expansion would be T (w) = t0 + t1w + ... , where t1 6= 0

due to the assumption of the presence of a zero of T (w). Therefore, recalling that a

translation of w is a symmetry of equation (4.51), we can use the shift w → w− t0
t1

to set

to zero the constant term. Once we find a solution with t0 = 0, the more general solution,

containing an additional integration constant w0, can be obtained by performing the shift

w → w − w0. So, substituting an expansion of the form T (w) = t1w + ... in (4.51), we

find that the Taylor series of T around w = 0 is given by:

T (w) = t1w

[
1 +

5

112
(7 t1 − 24)w +

1

1344
(35 t1

2 − 756 t1 + 864)w2 + ...

]
. (4.54)

Using (4.54) to set the initial conditions, we can solve (4.51) numerically for any choice of

the constant t1. However, we show in the Appendix that the expression for B(z), following

from (4.54), is real only for t1 > 0 or t1 < −16
7

. Taking t1 = 0.1 , we plot in Figure 1

the function T (w) obtained from the numerical integration. Other choices of positive t1

2 4 6 8 10
w

0.005

0.010

0.015

0.020

0.025

0.030

0.035

T

Figure 1: The function T (w) for integration constant t1 = 0.1.

give very similar results. As evident from the figure, T (w) increases until reaching the

maximum value Tmax ' 0.038 at w ≈ 1 and then decreases to zero as w →∞.

10Note that there are plenty of functions that do not have any zeros, like for example cosh(w).
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Having a numerical solution for T (w), we can now find numerically q(z) by integrating

(4.52). Indeed, recalling that w = log(q), we find from (4.52) 11 :

z =
3

7

∫ w

0

e−w√
1 + T (w)

dw , (4.55)

where we have fixed the integration constant by taking w = 0 at z = 0. Note that

requiring z ≥ 0 implies that w ≥ 0, or equivalently q ≥ 1, in (4.55). Substituting the

numerical results for T (w = log q) into (4.55), we can compute z as a function of q.

The result, plotted as the inverse function q(z), is shown in Figure 2. The function q(z)

0.1 0.2 0.3 0.4
z

5

10

15

20

q

Figure 2: The function q(z) for integration constant t1 = 0.1.

diverges at zmax ' 0.4231. This upper bound on z can be understood in the following

way. In the limit T → 0, the value of the integral for w → ∞ tends to 3 / 7 = 0.4285.

Since T is small, but nonzero, we have that zmax = 0.4231 < 3 / 7. At first sight, the

allowed range of z seems very short. However, recall that the solution can be rescaled by

the simultaneous transformations (4.53). So, by taking q0 >> 1, one can make zmax, and

thus the range of z, arbitrarily large. Note also, that another way of varying the range of

z is by changing the value of the constant t1, as can be seen from (4.55).

Having found q(z) numerically, we can compute numerically B(z) as well by using

(4.45). The function B(z) is plotted in Figure 3. It is finite at z = 0 and diverges at zmax.

From (4.43), we then conclude that the functions p(z) and A(z) are also regular at z = 0

and have logarithmic singularities at zmax.

11For convenience, here we take the plus sign in (4.52). It is easy to transform the results to the case

with the minus sign. We will comment more on that at the end of this section.
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Figure 3: The function B(z) for integration constant t1 = 0.1.

Finally, we will comment on the behavior of the solution for q(z), when the negative

sign in (4.52) is taken. Let us write the result of the integration in this case as:

z = −3

7

∫ w

0

e−w√
1 + T (w)

dw =
3

7

∫ 0

w

e−w√
1 + T (w)

dw , (4.56)

where again the integration constant is chosen so that q(0) = 1. Since now the positivity

of z implies negative w, we have that q(z) = ew ≤ 1. Choosing t1 = 0.1 as before,

we find, in an extension of our numerical computation to negative w, that in the limit

w → wmin = −1.757 the function T (w)→ −1. Hence, for w → wmin the integral in (4.56)

diverges, thus allowing us to identify this limit with z → ∞. Clearly then, the function

q(z) takes the finite value q = ewmin ≈ 0.17 as z →∞. Also, obviously, we have q = 1 at

z = 0. So, as z runs over the whole real axis, q(z) takes values in a finite range, namely:

ewmin ≤ q ≤ 1. Therefore, from (4.43) we can see that the scalar field p(z) does not have

a singularity in this case.

5 Toward glueball inflation

Here we studied the equations of motion of the 5d action (2.6)-(2.8), which is a consistent

truncation of 10d type IIB, with the metric ansatz (3.3)-(3.4) and with only z-dependent

profiles for the scalars. We found solutions of the form

ds2
5 = e2A(z)

(
−dt2 + e2Htd~x2

)
+ dz2 , (5.1)
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where the Hubble parameter H =
√

Λ
3

and Λ > 0. In the context of the gauge/gravity

duality, this gives a dual description of certain strongly coupled gauge theories in a 4d de

Sitter spacetime, thus providing a powerful tool for studying the latter. This topic was

already addressed in [10], although the set of nontrivial ten-dimensional fields in their

case is not compatible with the consistent truncation of [14], that we have used here.

Studying field theory in dS4 background is of great interest both because of Cosmolog-

ical Inflation and also because the present day Universe has a small, but non-vanishing,

positive cosmological constant. However, there are cosmological models with even more

involved time dependence of the 4d spacetimes; see [13], for instance, for interesting ex-

amples of holographic duals of such models.12 In fact, even for Inflation one would want

a time-dependent Hubble parameter, albeit a very slowly varying one [25]. So, although

(5.1) can be viewed as a leading approximation in the context of Inflation, ultimately we

would like to have a solution of the more general form

ds2
5 = e2A(z)

[
−dt2 + s(t)2d~x2

]
+ dz2 (5.2)

with the scale factor s(t) satisfying s̈ > 0, where we have denoted ˙ ≡ d
dt

. In this notation,

the standard definition of the Hubble parameter is

H ≡ ṡ

s
(5.3)

and the definition of slow variation (the “slow roll” regime) is

ε ≡ − Ḣ

H2
<< 1 . (5.4)

To find solutions of (2.9) of this kind, one needs to modify the ansatz for the scalar fields

in the following way:

Φi = Φi(t, z) . (5.5)

Then the field equations become much more complicated. Working with (3.29) provides

some simplification. Nevertheless, it is quite a nontrivial task to find analytic solutions.

So we leave the detailed investigation of this question for the future.

It is worth, though, to expand here upon why such solutions would be of great value

for Inflationary Cosmology. Recall that, when gravitational backgrounds solving (2.9) (or,

more precisely, the 10d type IIB action, which all solutions of this 5d system lift to) are

viewed as dual descriptions of strongly coupled gauge theories, the scalars Φi represent

12Note that the remark we made above, regarding the relation of [10] to the consistent truncation of

[14], applies to [13] as well, as they use the same field space truncation as [10].
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the glueball bound states. So the fact, that time-dependence in (some of the) Φi drives

the cosmological expansion of the 4d spacetime, means that the role of the 4d inflaton

field is played here by a composite scalar, more precisely a glueball, in a strongly coupled

gauge sector. Thus, this would be a gravitational dual of glueball inflation. Models,

in which the inflaton is composite instead of a fundamental scalar, have already been

proposed within purely field-theoretic inflationary model building [21, 22].13 The main

motivation is that in such models the so called η-problem does not occur. This problem

refers to the following. If the inflaton is a fundamental scalar, then as usual quantum

corrections drive its mass to the cut-off of the effective field theory describing it. This, in

particular, implies that η, one of the “slow roll” parameters that need to be << 1 during

Inflation, is driven to O(1).14 As a result, the inflationary expansion ends prematurely

[25]. On the other hand, if the inflaton is a composite scalar in a strongly coupled gauge

theory, then its mass is dynamically fixed. In addition, a huge advantage of having a

gravitational dual of such composite inflation models is that the inflaton mass becomes a

calculable quantity, just like the full glueball mass spectrum is. Finally, it is also worth

noting that glueball inflation models are expected to be able to produce large enough

levels of primordial gravitational waves [27], so that they could be tested within the next

years. For all these reasons it is, clearly, of great interest to find gravity duals of glueball

inflation. We hope to come back to this issue in the near future.

6 Discussion

We investigated a five-dimensional consistent truncation of type IIB supergravity, relevant

for gauge/gravity duality. Our goal was to find solutions with the metric ansatz

ds2
5 = e2A(z)gµνdx

µdxν + dz2 , (6.6)

where the 4d metric gµν is dS or AdS, and the scalars are of the form Φi = Φi(z). At

first sight, this ansatz does not have enough unknown functions to allow for solutions to

exist generically. Namely, there is one more field equation than unknown functions. How-

ever, we showed that, for a nontrivial warp factor A(z), one of those equations becomes

dependent on the others and, thus, is automatically satisfied when they are. This is true

13In addition, a holographic model of composite inflation due to a quark condensate was proposed in

[26], based on embedding flavor probe branes in AdS5 × S5. The strongly coupled gauge theory in that

case is N = 4 SYM with a small number of quark hypermultiplets.
14The η-parameter is proportional to the inflaton mass.
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regardless of the sign of the 4d cosmological constant Λ. We also saw that, for A = const,

there are no solutions with Λ > 0.

Further, we showed that three of the six scalar fields Φi = {p, x, g, φ, a, b}, in the 5d

theory under consideration, can be consistently set to zero; see (3.29). That simplification

allowed us to find analytically an explicit solution with Λ > 0, for which:

x = −6p , φ = 0 , g = 0 , a = 0 , b = 0 (6.7)

and p(z) and A(z) are given by (4.30). This solution was obtained in an approximation,

similar to the limit in which the walking solutions of [17] are found. It would be rather

interesting to understand whether there is a conceptual reason for that. Also, the existence

of this solution depended crucially on the presence of an overall minus sign in front of

the leading term in the five-dimensional potential. In other words, it was very important

that the 5d potential was negative definite, in the appropriate limit. It is definitely worth

trying to understand the physical significance of this.

Still working within the truncation (3.29), we were able to find numerically two other

classes of solutions with Λ > 0, for which:

x = −3

2
p , φ = 3p , g = 0 , a = 0 , b = 0 . (6.8)

These solutions are obtained, basically, in the limit P >> 1, Q = 0. Furthermore, the

coupled system of differential equations for p(z) and A(z) reduces in this case to a single

algebraic relation. We were able to find a couple of one-parameter families of numerical

solutions to this equation. Interestingly, it turns out that one of these classes of solutions

has a finite upper bound, zmax , on the range of z.

The analytical solution in (6.7) and both classes of numerical solutions in (6.8) are

regular at the origin z = 0, for appropriate choice of integration constants. However,

only one of the two numerical classes of solutions, the one corresponding to (4.56), is

finite for z → ∞. The other class, as well as the analytical solution, has divergences at

the upper bound of z (for the numerical class this is at zmax , whereas for the analytical

solution it is at z → ∞). In physical applications, though, there could be a natural

upper cutoff for the radial variable. This could be a dynamically generated scale, above

which the effective description provided by this model is not valid anymore, as in [28].

Or, in view of the cosmological applications, it could be the Hubble scale, that is the

natural effective field theory cutoff [25]. So our solutions could be useful laboratories

for studying strongly-coupled gauge theories in de Sitter space, regardless of whether

they have large z divergences or not. Of course, that will also depend on whether or
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not there are perturbative instabilities. Investigating the latter issue is rather involved

and we leave it for the future. Another interesting question, worth addressing, is what

microscopic (D-brane) realizations could lead to our solutions.

Finally, the explicit analytical solution in (6.7) could provide a useful starting point

for finding a gravitational dual of Glueball Inflation. Indeed, since in slow roll Inflation

the Hubble parameter has to vary with time rather slowly, the inflating solution can be

viewed as a small time-dependent perturbation of pure dS space (which has constant

Hubble parameter). Hence, studying small time-dependent perturbations around (6.7),

together with (4.30), could enable one to find an explicit solution with an inflating 4d

spacetime. We intend to explore this problem in the near future.
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A Parameter range for large P solutions

In Section 4.2.2 we found numerical solutions to equation (4.51), which have the form

(4.54) in a neighborhood of w = 0. Using these, one can find numerically the functions

of interest, namely q(z) and B(z). However, it turns out that not every value of the

integration constant t1, that parametrizes this family of solutions, leads to real B(z).

Recall that, to give a physical solution via (4.43), the function B(z) has to be real and

positive. We will show now that only t1 ∈
(
−∞,−16

7

)
∪ (0,∞) leads to physical solutions

for small T .

By inverting (4.54), we can obtain the expansion of q in powers of T . Substituting

this expression into (4.45), we find the following expansion for B2:

B2 =
7

144
t1 (16 + 7t1) +

(
7

24
+

2

9t1
+

49t1
576

)
T + ... . (A.1)

Recall that the constant t1 6= 0, as discussed above (4.54). So (A.1) is well-defined.

Furthermore, for T → 0, the first term determines the sign of B2. Hence, we see that
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for small T we have B2 > 0 (and thus real nonzero B) for t1 < −16
7

or t1 > 0 , while

B2 < 0 for t1 ∈
(
−16

7
, 0
)
. Also, one can see that B = 0 for t1 = −16

7
, as the coefficient

of each term in the B2(T ) expansion is zero. Note that an identically vanishing B is not

a physical solution, since it gives an infinite warp factor A for any z; see (4.43). Hence,

we conclude that the parameter range t1 ∈
[
−16

7
, 0
]

is not allowed for physical solutions

following from (4.54).

As an illustration of the above, let us briefly discuss the special case corresponding to

t1 = −16
7

. Interestingly, one can find this solution by solving

T ′ = −2T − 8

7
± 4

7

√
4 + 11T + 7T 2 . (A.2)

It is easy to verify that any T , satisfying (A.2), automatically satisfies (4.51) as well,

although the reverse is not true. The solution with t1 = −16
7

is obtained for the minus

sign in (A.2), whereas the plus sign gives a solution with diverging q for small T . Indeed,

imposing the constraint T (0) = 0, one can easily verify that the Taylor expansion coeffi-

cients, for the solution of the minus-sign equation in (A.2), coincide with those in (4.54)

with t1 = −16
7

.

We will show now that B ≡ 0 for any solution of (A.2). By integrating (A.2), we find:

q

q0

=

[
3

2T 2
(8 + 11T ± 4

√
4 + 11T + 7T 2)

] 7
6

(11 + 14T ± 2
√

7
√

4 + 11T + 7T 2)−
√

7
3 ,

(A.3)

where q0 = ew0 . This gives us q as a function of T . To compute B from (4.45), we also

need q′(z) and q′′(z) as functions of T . From (4.52), we have that q′ is given by:

q′(z) = ±7

3
q(T )2

√
1 + T . (A.4)

Then, taking the derivative of (A.4) with respect to z and substituting (A.4) in the result,

we obtain:

q′′(z) = ±q′(z) q(T )
7

6
√

1 + T

[
4 (1 + T ) + q

dT

dq

]
=

49

18
q(T )3

[
4(1 + T ) +

q(T )

q′(T )

]
,

(A.5)

where q(T ) / q′(T ) can be calculated by differentiating (A.3) with respect to T .

Substituting into (4.45) the expressions for q, q′ and q′′ from (A.3), (A.4) and (A.5)

respectively, we obtain B = 0 regardless of the choice of sign in (A.3). Clearly then, these

solutions are physically unacceptable, as they lead to infinite warp factor A for any z,

according to (4.43).
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