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Introduction - Overview of Talk

Alternative spacetime volume-forms (generally-covariant

integration measure densitites) independent on the Riemannian

metric on the pertinent spacetime manifold have profound

impact in (field theory) models with general coordinate

reparametrization invariance – general relativity and its

extensions, strings and (higher-dimensional) membranes.

Although formally appearing as “pure-gauge” dynamical degrees

of freedom the non-Riemannian volume-form fields trigger a

number of remarkable physically important phenomena.
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Introduction - Overview of Talk

Among the principal new phenomena are:

• (i) new mechanism of dynamical generation of cosmological

constant;

• (ii) new mechanism of dynamical spontaneous breakdown of

supersymmetry in supergravity;

• (iii) new type of "quintessential inflation" scenario in

cosmology;

• (iv) gravitational electrovacuum "bags".
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Modified-Measure Theories

In a series of previous papers [E.Guendelman et.al.] a new class

of generally-covariant (non-supersymmetric) field theory models

including gravity – called “two-measure theories” (TMT) was

proposed.

• TMT appear to be promising candidates for resolution of

various problems in modern cosmology: the dark energy and

dark matter problems, the fifth force problem, etc.

• Principal idea – employ an alternative volume form (volume

element or generally-covariant integration measure) on the

spacetime manifold in the pertinent Lagrangian action.
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Modified-Measure Theories

In standard generally-covariant theories (with action

S =
∫
dDx

√−gL) the Riemannian spacetime volume-form, i.e.,

the integration measure density is given by
√−g, where

g ≡ det ‖gµν‖ is the determinant of the corresponding

Riemannian metric gµν .
√−g transforms as scalar density under general coordinate

reparametrizations.

There is NO a priori any obstacle to employ insted of
√−g

another alternative non-Riemannian volume element given by

the following non-Riemannian integration measure density:

Φ(B) ≡ 1

(D − 1)!
εµ1...µD ∂µ1

Bµ2...µD
. (1)
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Modified-Measure Theories

Here Bµ1...µD−1
is an auxiliary rank (D − 1) antisymmetric tensor

gauge field, which will turn out to be pure-gauge degree of

freedom. Φ(B) similarly transforms as scalar density under

general coordinate reparametrizations.

In particular, Bµ1...µD−1
can also be parametrized in terms of D

auxiliary scalar fields:

Bµ1...µD−1
= 1

D
εIJ1...JD−1

φI∂µ1
φJ1 . . . ∂µD−1

φJD−1 ,

so that:

Φ(B) = 1
D!ε

µ1...µD εI1...ID∂µ1
φI1 . . . ∂µD

φID .
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Modified-Measure Theories

To illustrate the TMT formalism let us consider the following

action:

S = c1

∫
dDxΦ(B)

[
L(1)+

εµ1...µD

(D − 1)!
√−g∂µ1

Hµ2...µD

]
+c2

∫
dDx

√−g L(2)

(2)

with the following notations:

• The Lagrangians L(1,2) ≡ 1
2κ2R+ L

(1,2)
matter include both

standard Einstein-Hilbert gravity action as well as

matter/gauge-field parts. Here R = gµνRµν(Γ) is the scalar

curvature within the first-order (Palatini) formalism and

Rµν(Γ) is the Ricci tensor in terms of the independent affine

connection Γµ
λν .
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Modified-Measure Theories

• In general, second Lagrangian L(2) might contain also higher

curvature terms like R2.

• In the first modified-measure term of the action (2) we have

included an additional term containing another auxiliary rank

(D − 1) antisymmetric tensor gauge field Hµ1...µD−1
. Such

term would be purely topological (total divergence) one if

included in standard Riemannian integration measure action

like the second term with L(2) on the r.h.s. of (2).

Hµ1...µD−1
similarly will turn out to be pure-gauge degree of

freedom, however, both auxiliary tensor gauge fields (B and H)

will nevertheless play crucial role in the sequel.
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Modified-Measure Theories

Varying (2) w.r.t. H and B tensor gauge fields we get:

∂µ

(Φ(B)√−g
)
= 0 → Φ(B)√−g ≡ χ = const , (3)

L(1) +
εµ1...µD

(D − 1)!
√−g∂µ1

Hµ2...µD
=M = const , (4)

where χ (ratio of the two measure densities) and M are

arbitrary integration constants .

Performing canonical Hamiltonian analysis of (2) we find that the

above integration constants M and χ are in fact constrained
a’la Dirac canonical momenta of B and H.
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Modified-Measure Theories

Now, varying (2) w.r.t. gµν and taking into account (3)–(4) we

arrive at the following effective Einstein equations (in the

first-order formalism):

Rµν(Γ)−
1

2
gµνR+ Λeffgµν = κ2T eff

µν , (5)

with effective energy-momentum tensor:

T eff
µν = gµνL

eff
matter−2

∂Leff
matter

∂gµν
, Leff

matter ≡
1

c1χ+ c2

[
c1L

(1)
matter+c2L

(2)
matter

]
,

(6)

and with a dynamically generated effective cosmological
constant thanks to the non-zero integration constants

Λeff = κ2 (c1χ+ c2)
−1 χM . (7)
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Supersymmetric Higgs Effect in Supergravity

Let us now apply the above TMT formalism to construct a

modified-measure version of N = 1 supergravity in D = 4.

Recall the standard component-field action of D = 4 (minimal)

N = 1 supergravity:

SSG =
1

2κ2

∫
d4x e

[
R(ω, e)− ψ̄µγ

µνλDνψλ

]
, (8)

e = det ‖eaµ‖ , R(ω, e) = eaµebνRabµν(ω) . (9)

Rabµν(ω) = ∂µωνab − ∂νωµab + ωc
µaωνcb − ωc

νaωµcb . (10)

Dνψλ = ∂νψλ +
1

4
ωνabγ

abψλ , γµνλ = eµae
ν
b e

λ
c γ

abc , (11)

where all objects belong to the first-order “vierbein”

(frame-bundle) formalism.
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Supersymmetric Higgs Effect in Supergravity

The vierbeins eaµ (describing the graviton) and the

spin-connection ωµab (SO(1, 3) gauge field acting on the gravitino

ψµ) are a priori independent fields (their relation arises

subsequently on-shell); γab ≡ 1
2

(
γaγb − γbγa

)
etc. with γa

denoting the ordinary Dirac gamma-matrices. The invariance of

the action (8) under local supersymmetry transformations:

δǫe
a
µ =

1

2
ε̄γaψµ , δǫψµ = Dµε (12)

follows from the invariance of the pertinent Lagrangian density

up to a total derivative:

δǫ

(
e
[
R(ω, e)− ψ̄µγ

µνλDνψλ

])
= ∂µ

[
e
(
ε̄ζµ

)]
, (13)

where ζµ functionally depends on the gravitino field ψµ.
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Supersymmetric Higgs Effect in Supergravity

We now propose a modification of (8) by replacing the standard

generally-covariant measure density e =
√−g by the alternative

measure density Φ(B) (Eq.(1) for D = 4):

Φ(B) ≡ 1

3!
εµνκλ ∂µBνκλ , (14)

and we will use the general framework described above. The

modified supergravity action reads:

SmSG =
1

2κ2

∫
d4xΦ(B)

[
R(ω, e)−ψ̄µγ

µνλDνψλ+
εµνκλ

3! e
∂µHνκλ

]
,

(15)

where a new term containing the field-strength of a 3-index

antisymmetric tensor gauge field Hνκλ has been added.
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Supersymmetric Higgs Effect in Supergravity

The equations of motion w.r.t. Hνκλ and Bνκλ yield:

∂µ

(Φ(B)

e

)
= 0 → Φ(B)

e
≡ χ = const , (16)

R(ω, e)− ψ̄µγ
µνλDνψλ +

εµνκλ

3! e
∂µHνκλ = 2M , (17)

where χ and M are arbitrary integration constants.

The action (15) is invariant under local supersymmetry

transformations (12) supplemented by transformation laws for

Hµνλ and Φ(B):

δǫHµνλ = −e εµνλκ
(
ε̄ζκ

)
, δǫΦ(B) =

Φ(B)

e
δǫe , (18)

which algebraically close.
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Supersymmetric Higgs Effect in Supergravity

The appearance of the integration constant M represents a

dynamically generated cosmological constant in the

pertinent gravitational equations of motion and, thus, it signifies

a spontaneous (dynamical) breaking of supersymmetry.

Indeed, varying (15) w.r.t. eaµ:

ebνRa
bµν −

1

2
ψ̄µγ

aνλDνψλ +
1

2
ψ̄νγ

aνλDµψλ

+
1

2
ψ̄λγ

aνλDνψµ +
eaµ
2

ερνκλ

3! e
∂ρHνκλ = 0 (19)

and using Eq.(17) (containing the arbitrary integration constant

M ) to replace the last H-term on the l.h.s. of (19), the results is:
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Supersymmetric Higgs Effect in Supergravity

We obtain the vierbein counterparts of the Einstein equations

including a dynamically generated floating cosmological

constant term eaµM :

ebνRa
bµν −

1

2
eaµR(ω, e) + eaµM = κ2T a

µ ,

κ2T a
µ ≡ 1

2
ψ̄µγ

aνλDνψλ − 1

2
eaµψ̄ργ

ρνλDνψλ − 1

2
ψ̄νγ

aνλDµψλ − 1

2
ψ̄λγ

aνλDνψµ . (20)

Recall: according to the classic paper [Deser-Zumino, 78] the

sole presence of a cosmological constant in supergravity, even in

the absence of manifest mass term for the gravitino, implies that

the gravitino becomes massive , i.e., it absorbs the Goldstone

fermion of spontaneous supersymmetry breakdown – a

supersymmetric Higgs effect .
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AdS Supergravity

More interesting scenario: let us start with anti-de Sitter (AdS)

supergravity:

SAdS−SG =
1

2κ2

∫
d4x e

[
R(ω, e)− ψ̄µγ

µνλDνψλ −mψ̄µγ
µνψν − 2Λ0

]
, (21)

m ≡ 1

L
, Λ0 ≡ − 3

L2
. (22)

The action (21) contains additional explicit mass term for the

gravitino as well as a bare cosmological constant Λ0 balanced in

a precise way |Λ0| = 3m2 so as to maintain local supersymmetry

invariance and, in particular, keeping the physical gravitino
mass zero !

19



AdS Supergravity

Note: Here we have AdS spacetime as a background with

curvature radius L (unlike Minkowski background in the absence

of a bare cosmological constant).

Therefore, the notions of “mass” and “spin” are given in terms of

the Casimir eigenvalues of the UIR’s (discrete series) of the

group of motion of AdS space SO(2, 3) ∼ Sp(4,R) (for D = 4)

instead of the Poincare group (SO(1, 3)⋉R4) Casimirs.

Identification (correspondence) of AdS (SO(2, 3) ∼ Sp(4,R))

Casimirs with Minkowski (Poincare) "mass" and "spin" Casimirs

proceeds only in the limit of Λ0 → 0 (very small cosmological

constant). Otherwise "massless" within AdS means having only

two "helicities".
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Modified AdS Supergravity

Now, let us apply the above TMT-formalism to construct a

modified-measure AdS supergravity:

Smod−AdS−SG =
1

2κ2

∫
d4xΦ(B)

[
R(ω, e)− ψ̄µγ

µνλDνψλ

−mψ̄µγ
µνψν − 2Λ0 +

εµνκλ

3! e
∂µHνκλ

]
, (23)

with Φ(B) as in (14) and m,Λ0 as in (21). The action (23) is

invariant under local supersymmetry transformations:

δǫe
a
µ =

1

2
ε̄γaψµ , δǫψµ =

(
Dµ − 1

2L
γµ

)
ε ,

δǫHµνλ = −e εµνλκ
(
ε̄ζκ

)
, δǫΦ(B) =

Φ(B)

e
δǫe . (24)
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Modified AdS Supergravity - Principal Result

The modified AdS supergravity action (23) will trigger dynamical

spontaneous supersymmetry breaking resulting in the

appearance of the dynamically generated floating cosmological

constant M which will add to the bare Λ0.

Thus, we can achieve via appropriate choice of M ≃ |Λ0| a very
small effective observable cosmological constant
Λeff =M + Λ0 =M − 3m2 << |Λ0| and, simultaneously, a large
physical gravitino mass meff which will be very close to the

gravitino mass parameter m =
√
|Λ0|/3 since now background

spacetime geometry becomes almost flat.

This is precisely what is required by modern cosmological

scenarios for slowly expanding universe of today [A. Riess et.al.,

S. Perlmutter et.al.].
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Generalized Modified-Measure Theories

Let us now consider modified-measure gravity-matter theories

constructed in terms of two different non-Riemannian

volume-forms (employing again Palatini formalism, and using

units where GNewton = 1/16π):

S =

∫
d4xΦ1(A)

[
R+L(1)

]
+

∫
d4xΦ2(B)

[
L(2) + ǫR2 +

Φ(H)√−g
]
.

(25)

• Φ1(A) and Φ2(B) are two independent non-Riemannian

volume-forms:

Φ1(A) =
1

3!
εµνκλ∂µAνκλ , Φ2(B) =

1

3!
εµνκλ∂µBνκλ , (26)

Φ(H) =
1

3!
εµνκλ∂µHνκλ (as in (15) above) . (27)
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Generalized Modified-Measure Theories

• L(1,2) denote two different Lagrangians of a single scalar

matter field of the form:

L(1) = −1

2
gµν∂µϕ∂νϕ− V (ϕ) , V (ϕ) = f1 exp{−αϕ} , (28)

L(2) = − b
2
e−αϕgµν∂µϕ∂νϕ+ U(ϕ) , U(ϕ) = f2 exp{−2αϕ} , (29)

where α, f1, f2 are dimensionful positive parameters,

whereas b is a dimensionless one.

• Global Weyl-scale invariance of the action (25):

gµν → λgµν , Γ
µ
νλ → Γµ

νλ , ϕ→ ϕ+ 1
α
lnλ ,

Aµνκ → λAµνκ , Bµνκ → λ2Bµνκ , Hµνκ → Hµνκ .
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Generalized Modified-Measure Theories

Eqs. of motion w.r.t. affine connection Γµ
νλ yield a solution for the

latter as a Levi-Civita connection:

Γµ
νλ = Γµ

νλ(ḡ) =
1

2
ḡµκ (∂ν ḡλκ + ∂λḡνκ − ∂κḡνλ) , (30)

w.r.t. to the Weyl-rescaled metric ḡµν :

ḡµν = (χ1 + 2ǫχ2R)gµν , χ1 ≡
Φ1(A)√−g , χ2 ≡

Φ2(B)√−g . (31)

Transition from original metric gµν to ḡµν : “Einstein-frame” ,

where the gravity eqs. of motion are written in the standard form

of Einstein’s equations: Rµν(ḡ)− 1
2 ḡµνR(ḡ) =

1
2T

eff
µν with an

appropriate effective energy-momentum tensor given in terms

of an Einstein-frame scalar Lagrangian Leff (see (34) below).

25



Generalized Modified-Measure Theories

Variation of the action (25) w.r.t. auxiliary tensor gauge fields

Aµνλ, Bµνλ and Hµνλ yields the equations:

∂µ

[
R+L(1)

]
= 0 , ∂µ

[
L(2)+ǫR2+

Φ(H)√−g
]
= 0 , ∂µ

(Φ2(B)√−g
)
= 0 ,

(32)

whose solutions read:

Φ2(B)√−g ≡ χ2 = const , R+ L(1) = −M1 = const ,

L(2) + ǫR2 +
Φ(H)√−g = −M2 = const . (33)

Here M1 and M2 are arbitrary dimensionful and χ2 arbitrary

dimensionless integration constants.
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Generalized Modified-Measure Theories

The first integration constant χ2 in (33) preserves global

Weyl-scale invariance whereas the appearance of the second

and third integration constants M1, M2 signifies dynamical

spontaneous breakdown of global Weyl-scale invariance due to

the scale non-invariant solutions (second and third ones) in (33).

It is very instructive to elucidate the physical meaning of the

three arbitrary integration constants M1, M2, χ2 from the point of

view of the canonical Hamiltonian formalism: M1, M2, χ2 are

identified as conserved Dirac-constrained canonical momenta

conjugated to (certain components of) the auxiliary maximal

rank antisymmetric tensor gauge fields Aµνλ, Bµνλ,Hµνλ

entering the original non-Riemannian volume-form action (25).
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Generalized Modified-Measure Theories

Performing transition to the Einstein frame yields the following

effective scalar Lagrangian of non-canonical “k-essence” (kinetic

quintessence) type (X ≡ −1
2 ḡ

µν∂µϕ∂νϕ – scalar kinetic term):

Leff = A(ϕ)X +B(ϕ)X2 − Ueff(ϕ) , (34)

where (recall V = f1e
−αϕ and U = f2e

−2αϕ):

A(ϕ) ≡ 1 +
[1
2
be−αϕ − ǫ(V −M1)

] V −M1

U +M2 + ǫ(V −M1)2
, (35)

B(ϕ) ≡ χ2

ǫ
[
U +M2 + (V −M1)be

−αϕ
]
− 1

4b
2e−2αϕ

U +M2 + ǫ(V −M1)2
, (36)

Ueff(ϕ) ≡
(V −M1)

2

4χ2

[
U +M2 + ǫ(V −M1)2

] . (37)
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Generalized Modified-Measure Theories

Most remarkable feature of the effective scalar potential Ueff(ϕ)

(37) – two infinitely large flat regions :

• (-) flat region – for large negative values of ϕ:

Ueff(ϕ) ≃ U(−) ≡
f21 /f2

4χ2(1 + ǫf21/f2)
, (38)

• (+) flat region – for large positive values of ϕ:

Ueff(ϕ) ≃ U(+) ≡
M2

1 /M2

4χ2(1 + ǫM2
1 /M2)

, (39)
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Generalized Modified-Measure Theories

Qualitative shape of the effective scalar potential Ueff (37) as

function of ϕ for M1 < 0.

30



Generalized Modified-Measure Theories

Qualitative shape of the effective scalar potential Ueff (37) as

function of ϕ for M1 > 0.
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Generalized Modified-Measure Theories

From the expression for Ueff(ϕ) (37) and the figures 1 and 2 we

deduce that we have an explicit realization of quintessential
inflation scenario (continuously connecting an inflationary

phase to a slowly accelerating “present-day” universe through

the evolution of a single scalar field).

The flat regions (38) and (39) correspond to the evolution of the

early and the late universe, respectively, provided we choose

the ratio of the coupling constants in the original scalar potentials

versus the ratio of the scale-symmetry breaking integration

constants to obey:

f21 /f2
1 + ǫf21 /f2

≫ M2
1 /M2

1 + ǫM2
1 /M2

, (40)

which makes the vacuum energy density of the early universe
U(−) much bigger than that of the late universe U(+).

32



Generalized Modified-Measure Theories

The inequality (40) is equivalent to the requirements:

f21
f2

≫ M2
1

M2
, |ǫ|M

2
1

M2
≪ 1 . (41)

If we choose the scales |M1| ∼M4
EW and M2 ∼M4

Pl, where

MEW , MPl are the electroweak and Plank scales, respectively,

we are then naturally led to a very small vacuum energy density:

U(+) ∼M8
EW /M

4
Pl ∼ 10−120M4

Pl , (42)

which is the right order of magnitude for the present epoche’s

vacuum energy density.
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Generalized Modified-Measure Theories

On the other hand, if we take the order of magnitude of the

coupling constants in the effective potential

f1 ∼ f2 ∼ (10−2MPl)
4, then the order of magnitude of the

vacuum energy density of the early universe becomes:

U(−) ∼ f21 /f2 ∼ 10−8M4
Pl , (43)

which conforms to the Planck Collaboration data (also BICEP2)

implying the energy scale of inflation of order 10−2MPl.
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“Emergent universe”

There exists explicit cosmological solution of the Einstein-frame

system (34)-(37) describing an epoch of a non-singular creation

of the universe – “emergent universe”, preceding the inflationary

phase. The starting point are the Friedman eqs.:

..
a

a
= − 1

12
(ρ+ 3p) , H2 +

K

a2
=

1

6
ρ , H ≡

.
a

a
, (44)

describing the universe’ evolution. Here:

ρ =
1

2
A(ϕ)

.
ϕ
2
+
3

4
B(ϕ)

.
ϕ
4
+Ueff(ϕ) , (45)

p =
1

2
A(ϕ)

.
ϕ
2
+
1

4
B(ϕ)

.
ϕ
4 −Ueff(ϕ) (46)

are the energy density and pressure of the scalar field ϕ = ϕ(t).
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“Emergent universe”

“Emergent universe” is defined as a solution of the Friedman

eqs.(44) subject to the condition on the Hubble parameter H:

H = 0 → a(t) = a0 = const , ρ+3p = 0 ,
K

a20
=

1

6
ρ (= const) ,

(47)

with ρ and p as in (45)-(46). Here K = 1 (“Einstein universe”).

The “emergent universe” condition (47) implies that the

ϕ-velocity
.
ϕ≡

.
ϕ0 is time-independent and satisfies the

bi-quadratic algebraic equation:

3

2
B(−)

.
ϕ
4
0 +2A(−)

.
ϕ
2
0 −2U(−) = 0 , (48)

where A(−), B(−), U(−) are the limiting values on the (−) flat

region of A(ϕ), B(ϕ), Ueff(ϕ) (35)-(37).
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“Emergent universe”

The solution of Eq.(48) reads:

.
ϕ
2
0= − 2

3B(−)

[
A(−) ∓

√
A2

(−) + 3B(−)U(−)

]
. (49)

and, thus, the “emergent universe” is characterized with finite
initial Friedman factor and density:

a20 =
6K

ρ0
, ρ0 =

1

2
A(−)

.
ϕ
2
0 +

3

4
B(−)

.
ϕ
4
0 +U(−) , (50)

with
.
ϕ
2
0 as in (49).
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“Emergent universe”

Analysis of stability of the “emergent universe” solution (50)

yields a harmonic oscillator type equation for the perturbation of

the Friedman factor δa:

δ
..
a +ω2δa = 0 , ω2 ≡ 2

3
ρ0

√
A2

(−) + 3B(−)U(−)

A(−) − 2
√
A2

(−) + 3B(−)U(−)

.

(51)

Thus stability condition ω2 > 0 yields the following constraint on

the coupling parameters:

max
{
−2 , −8

(
1+3ǫf21 /f2

)[
1−

√
1− 1

4
(
1 + 3ǫf21 /f2

)
]}

< b
f1
f2

< −1 .

(52)
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“Emergent universe”

Since the ratio f2
1

f2
proportional to the height of the (−) flat region

of the effective scalar potential, i.e., the vacuum energy density

in the early universe, must be large (cf. (40)), we find that the

lower end of the interval in (52) is very close to the upper end,

i.e., b f1
f2

≃ −1.

From Eqs.(49)-(50) we obtain an inequality satisfied by the initial

energy density ρ0 in the emergent universe: U(−) < ρ0 < 2U(−),

which together with the estimate of the order of magnitude for

U(−) (43) implies order of magnitude for a20 ∼ 10−8KM−2
Pl , where

K is the Gaussian curvature of the spacial section.
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Coupling to Charge-Confining Gauge Field

G. ‘t Hooft phenomenological confinement proposal: the energy

density of electrostatic field configurations in the low-energy

description of confining quantum gauge theories must be a linear

function of the electric displacement field in the infrared region

(the latter appearing as a quantum “infrared counterterm”).

Explicit realization of ‘t Hoofts idea [Guendelman et.al.]:

S =

∫
d4x

√−g
[
L(F 2)+AµJ

µ
]

, L(F 2) = −1

4
F 2−f0

2

√
−F 2 ,

(53)

where F 2 ≡ F 2(g) = FκλFµνg
κµgλν and Fµν = ∂µAν − ∂νAµ.

The square root of the Maxwell term naturally arises as a result

of spontaneous breakdown of scale symmetry of the original

scale-invariant Maxwell action with f0 appearing as an

integration constant responsible for the spontaneous breakdown.
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Coupling to Charge-Confining Gauge Field

The nonlinear gauge field action (53) yields eqs. of motion:

∂ν

(√−g4L′(F 2)Fµν
)
+
√−gJµ = 0 , L′(F 2) = −1

4

(
1− f0√

−F 2

)
,

(54)

whose µ = 0 component – the nonlinear “Gauss law” constraint

equation reads:

1√−g∂i
(√−gDi

)
= J0 , Di =

(
1− f0√

−F 2

)
F 0i , (55)

with ~D ≡ (Di) denoting the electric displacement field

nonlinearly related to the electric field ~E ≡ (F 0i) as in the last

relation (55).
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Coupling to Charge-Confining Gauge Field

In the nonlinear gauge field theory (53) there exists a nontrivial

vacuum solution
√
−F 2

vac = f0, which implies simultaneous

vanishing of the electric displacement field, ~D = 0 meaning zero

observed charge, and at the same time nontrivial electric field. In

particular, for static spherically symmetric fields in static

spherically symmetric metric the only surviving component of

Fµν is the nonvanishing radial component of the electric field

Er = −F0r, so that
√

−F 2
vac =

√
2| ~E| = f0. This can be viewed

as the simplest classical manifestation of charge confinement:
~D = 0 and nontrivial ~E.

Canonically quantizing the spherically symmetric restriction of

(53) we are able to show that the effective potential between two

oppositely charged fermions is of the “Cornell”-type:

Veff(L) = − e2
0

2π
1
L
+ e0f0

√
2L+

(
L−independent const

)
.
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Coupling to Charge-Confining Gauge Field

Let us now consider the gravity-matter model with two different

non-Riemannian volume-forms (25) coupled to the

charge-confining (53):

S =

∫
d4xΦ1(A)

[
R+ L(1) − f0

2

√
−F 2(g)

]

+

∫
d4xΦ2(B)

[
L(2) + ǫR2 − 1

4e2
F 2(g) +

Φ(H)√−g
]
. (56)

Repeating the same steps as with (25) above, the Einstein-frame

effective matter/gauge field Lagrangian takes the generalized

“k-essence” form as (34) with the same “k-essence” coefficient

functions A(ϕ), B(ϕ) (35)-(36) and effective scalar potential

Ueff(ϕ) (37) possessing two infinitely large (−) and (+) flat

regions, however, now it contains additional gauge field

dependent terms:
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Coupling to Charge-Confining Gauge Field

Leff = A(ϕ)X +B(ϕ)X2 − Ueff(ϕ)

− F 2(ḡ)

4e2eff(ϕ)
− feff(ϕ)

2

√
−F 2(ḡ)− ǫχ2f0A(ϕ)X

√
−F 2(ḡ) , (57)

where now the gauge coupling constants are “running” with the

“dilaton” ϕ:

feff(ϕ) = f0
f2e

−2αϕ +M2

f2e−2αϕ +M2 + ǫ(f1e−αϕ −M1)2
, (58)

1

e2eff(ϕ)
= χ2

[ 1

e2
+ ǫ f20

f2e
−2αϕ +M2

f2e−2αϕ +M2 + ǫ(f1e−αϕ −M1)2

]
. (59)

(recall V = f1e
−αϕ and U = f2e

−2αϕ),
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“Vacuum” Configurations

The eqs. motion resulting from Einstein-frame Lagrangian (57):

1√−ḡ ∂µ
(√−ḡḡµν∂νϕ

∂Leff

∂X

)
−∂Leff

∂ϕ
= 0 , ∂ν

(√−ḡFµν ∂Leff

∂F 2

)
= 0

(60)

allow for the following two classes of nontrivial “vacuum”

solutions:

• (i) “Standard vacuum” containing standard constant “dilaton”

vacuum plus nontrivial gauge field vacuum:

ϕ = const → X = 0 ,
∂Leff

∂ϕ
= 0 ,

∂Leff

∂F 2
= 0 . (61)

Here the value ϕ = const belongs to either the (−) flat region

(38) or the (+) flat region (39) of the effective scalar potential.
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“Vacuum” Configurations

• (ii) “Kinetic vacuum” (this type of “vacuum” exists thanks to

the nonlinear w.r.t. X “k-essence” nature of the effective

Lagrangian (57)):

∂Leff

∂X
= 0 ,

∂Leff

∂ϕ
= 0 ,

∂Leff

∂F 2
= 0 . (62)

Here the “dilaton” ϕ = ϕ(x) will be slightly space-varying but

its values again will belong to either the (−) flat region (38) or

the (+) flat region (39).

Because of the presence of the two flat regions of the effective

scalar potential, the scalar dilation second-order eqs. of motion

are automatically (approximately) satisfied.
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“Standard Vacuums” = de Sitter + Confinement

In the first class of “standard vacuum” solutions the last equation

(61) yields the following non-trivial “vacuum” value for the gauge

field: √
−F 2

(±) = e2(±)f(±) . (63)

Here and below the subscripts (±) indicate limiting values of

e2eff(ϕ), feff(ϕ) (59)-(58) on the (±) flat regions of effective scalar

potential. For the associated matter energy-momentum tensor

we get:

T eff
µν = ḡµνLeff

∣∣
X=0,

∂Leff

∂F2
=0

= −ḡµνU (standard)
(±) (64)

where U (standard)
(±)

is the total effective scalar potential in the

“standard vacuums” (61):
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“Standard Vacuums” = de Sitter + Confinement

U
(standard)
(−)

= U(−) +
1

4
e2(−)f

2
(−) =

1

4ǫχ2

[
1− 1

1 + ǫf21 /f2 + ǫe2f20

]
, (65)

U
(standard)
(+)

= U(+) +
1

4
e2(+)f

2
(+) =

1

4ǫχ2

[
1− 1

1 + ǫM2
1 /M2 + ǫe2f20

]
. (66)

Therefore, according to (64) the solutions of the Einstein-frame

ḡµν-equations are of de Sitter type (dS or Schw-dS):

ds2 = ḡµνdx
µdxν = −A(r)dt2 +

dr2

A(r)
+ r2

(
dθ2 + sin2 θdφ

)
, (67)

A(r) = 1−
Λ(±)

3
r2 , or A(r) = 1− 2m

r
−

Λ(±)

3
r2 (68)

in static spherically symmetric coordinate chart, with effective

dynamically induced cosmological constants Λ(±) given by:

Λ(−) =
1
2U

(standard)
(−)

, Λ(+) =
1
2U

(standard)
(+)

.
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“Standard Vacuums” = de Sitter + Confinement

Let us recall that as demonstrated above, the strength of charge

confinement is proportional to the non-zero vacuum value of the

nonlinear gauge field
√
−F 2

(±) (63).

Now, from the above analysis of the “standard vacuum” solutions

– given by ϕ = const belonging to the (±) flat regions of the

effective scalar potential (38)-(39) and possessing non-zero
gauge field vacuum values (63) and non-zero vacuum energy

densities (65)-(66) – we conclude that these “standard vacuum”

solutions describe charge confining phases of different

confining strength and with different dynamically generated
cosmological constants. The latter property is analogous to the

above cosmological scenario context where the evolution of the

early and late universe was related to two flat regions of the

effective scalar potential (two different vacuum energy densities).
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“Kinetic vacuum”

The “kinetic vacuum” eqs. ∂Leff

∂X
= 0 and ∂Leff

∂F 2 = 0 yield:

Xkin = − A

2B

1− ǫχ2f0feffe
2
eff

1− ǫ2χ2
2f

2
0 e

2
effA

2/B
, (69)

√
−F 2

kin = e2eff
feff − ǫχ2f0A

2/B

1− ǫ2χ2
2f

2
0 e

2
effA

2/B
, (70)

T eff
µν = ḡµνLeff

∣∣
∂Leff

∂X
=0,

∂Leff

∂F2
=0

= −ḡµνU (kinetic)
total , (71)

where U (kinetic)
total is the total effective scalar potential in the “kinetic

vacuum” (62):

U
(kinetic)
total = Ueff +

A2

4B
+

1

4
e2eff

(
feff − ǫχ2f0

A2

B

)2

1− e2effǫ
2χ2

2f
2
0
A2

B

. (72)
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“Kinetic vacuum” on the (+) Flat Region

From (72) we deduce that in the “kinetic vacuum” the effective

gauge coupling constants become:

f̃eff = feff − ǫχ2f0
A2

B
, ẽ2eff =

e2eff
1− e2effǫ

2χ2
2f

2
0
A2

B

(73)

Inserting in (69)-(72) the values of the respective parameters for

the (+) flat region of the effective scalar potential yields:

√
−F 2

kin

∣∣
(+)

= 0 , Xkin ≃ X(+) = −
A(+)

2B(+)
= − 1

2ǫχ2
(74)

U
(kinetic)
total ≃ U

(kinetic)
(+)

=
1

4ǫχ2
→ T eff

µν = −ḡµν
1

4ǫχ2
, (75)

i.e., we have here an effective cosmological constant:

Λ(+) ≡ Λ
(kinetic)
(+)

=
1

8ǫχ2
. (76)
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“Kinetic vacuum” on the (+) Flat Region

Remarkable feature : the first relation in (74) –
√
−F 2

kin

∣∣
(+)

= 0,

i.e., the zero vacuum value for the nonlinear gauge field, which is

due to the vanishing of the effective coupling constant of the

“square-root” Maxwell term (73) on the (+) flat region.

In accordance with ‘t Hooft’s phenomenological confinement

proposal and as demonstrated explicitly in [GNP, 2015], the latter

implies absence of confinement of charged particles , i.e., the

“kinetic vacuum” (74)-(75) describes a deconfinement phase.

According to (71) and (75)-(76) the solutions of the

Einstein-frame ḡµν-equations in the “kinetic vacuum” are again of

de Sitter type (67)-(68) with Λ(+) given by (76).
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“Kinetic vacuum” on the (+) Flat Region

The equation for the “dilaton” “kinetic vacuum” (second Eq.(74))

reads explicitly:

ḡµν∂µϕ∂νϕ− 1

ǫχ2
= 0 . (77)

It has precisely the form of Hamilton-Jacobi equation for the

Hamilton-Jacobi action:

S(x) ≡ ϕ(x) =
1√
ǫχ2

∫ λout

λin

dλ

√
gµν(x(λ))

dxµ

dλ

dxν

dλ
(78)

corresponding to spacelike geodesics xµ(λ) starting from some

fixed point x(0) (e.g., x(0) = 0) at a fixed value of the affine

parameter λin and passing through x = x(λout) at λout. This

Hamilton-Jacobi action (78) measures the proper distance

between the points x(0) and x on the manifold modulo the

numerical factor 1/
√
ǫχ2.
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“Kinetic vacuum” on the (+) Flat Region

A static spherically symmetric solution for ϕ(x) is given by:

(∂ϕ
∂r

)2
=

1

ǫχ2A(r)
→ ϕ(r) = ϕ(+) +

1√
ǫχ2

∫ r dr′√
A(r′)

, (79)

where the initial value ϕ(+) must belong to the (+) flat region

(large positive ϕ).

In the case of pure de Sitter metric (67)-(68) the solution ϕ(r)

(79), measuring the proper radial distance between 0 and r, is

clearly defined only for r in the interval r ∈ (0, r(+)), where

r(+) =
√
24ǫχ2 is the de Sitter horizon radius.

The solution ϕ(r) reads explicitly:

ϕ(r) = ϕ(+) +
√
24 arcsin

( r

r(+)

)
, (80)

where the initial value ϕ(+) belongs to the (+) flat region of the

effective scalar potential. 54



“Kinetic vacuum” on the (+) Flat Region

Since the “kinetic vacuum” corresponding to the (+) flat region

described by (74)-(80) is defined only within the finite-volume

space region below the de Sitter horizon, in order to be extended

to the whole space it must be matched to another spherically

symmetric configuration with the standard constant “dilaton”

vacuum defined in the outer region beyond the de Sitter horizon

with:

ϕ = ϕ(r(+)) = ϕ(+) +
√
6π = const for r > r(+) , (81)

where the latter is the limiting value of (80) at the horizon. The

corresponding construction yields a gravitational bag-like

solution mimicking both some of the features of the MIT bags in

QCD phenomenology as well as some of the features of the

“constituent quark” model.
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Gravitational Bag-like Solutions

Here we construct matching of the “kinetic vacuum” in (+) flat

region of the effective scalar potential given by de Sitter metric

(67)-(68) in the interior region (r < r(+)) below the de Sitter

horizon r(+) =
√
24ǫχ2 with effective cosmological constant (76)

and by Eqs.(74)-(80), to a static spherically symmetric

configuration containing the standard constant “dilaton” vacuum

(81) in the outer region (r > r(+)) beyond the de Sitter horizon.

The “matching” specifically means that the “dilaton” field, the

gauge field strength and the metric with its first derivatives must

be continuous across the horizon, in particular, the de Sitter

horizon of the interior metric must coincide with a horizon of the

exterior metric.
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Gravitational Bag-like Solutions

Previously we have already explicitly derived static spherically

symmetric solutions of the coupled gravity/nonlinear gauge

field/scalar “dilaton” system (57) with a generalized
Reissner-Nordström-(anti)de Sitter geometry carrying a

non-vanishing background constant radial electric field in

addition to the standard Coulomb field. We will use this type of

solution in the outer region beyond the de Sitter horizon to be

matched with the “kinetic vacuum” (74)-(80) in the interior region.

Specifically, for r > r(+) =
√
24ǫχ2 the solution reads:

ds2 = −Aout(r)dt
2 +

dr2

Aout(r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (82)

Aout(r) = 1 +
1

16π

[
−
√
8π|Q|f(+) −

2m

r
+

Q2

e2
(+)

r2

]
− Λout

3
r2 , (83)
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Gravitational Bag-like Solutions

Λout =
1

2
U

(standard)
(+) =

1

8ǫχ2

[
1− 1

1 + ǫM2
1 /M2 + ǫe2f20

]
,

√
−F 2

out(r) =
√
2| ~Eout(r)| = e2(+)f(+) −

|Q|√
2π r2

, (84)

ϕ = ϕ(r(+)) = const (as in (81)) , (85)

where e2(+), f(+) are the limiting values of the “running” gauge

coupling constants on the (+) flat region of the effective scalar

potential:

e2eff(ϕ) ≃ e(+) ≡
e2

χ2

1 + ǫM2
1 /M2

1 + ǫM2
1 /M2 + e2ǫf20

,

feff(ϕ) ≃ f(+) ≡
f0

1 + ǫM2
1 /M2

. (86)
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Gravitational Bag-like Solutions

The matching of the exterior solution (82)-(85) with the interior

region “kinetic vacuum” (74)-(80) at the de Sitter horizon

uniquely determines m, Q parameters:

m = 0 , |Q| =
√
2πe2(+)f(+) 24ǫχ2 =

√
2π24ǫe2f0

1 + ǫM2
1 /M2 + e2ǫf20

,

(87)

with the following additional relation between the integration

constants M1,2 and the initial coupling constants ǫ, e, f0:

1 + ǫ
M2

1

M2
− 3ǫf20 e

2 = 0 . (88)
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Gravitational Bag-like Solutions

To recapitulate, we have obtained the following “vacuum-like”

solution:
• In the inner space region r < r(+) =

√
24ǫχ2 we have an

interior de Sitter region below the de Sitter horizon at

r = r(+) with effective cosmological constant

Λin = 1
2U

(kinetic)
(+)

= 1/8ǫχ2, with vanishing vacuum gauge

field (first Eq.(74)), “kinetic vacuum” scalar “dilaton”

according to (80) and vacuum energy density (75):

ρin ≃ U
(kinetic)
(+) =

1

4ǫχ2
. (89)

• In the outer space region r > r(+) =
√
24ǫχ2 we have static

spherically symmetric metric (83) with:

Aout(r) = 1− 1

2ǫe2f20
+

6χ2

e2f20

1

r2
− r2

24ǫχ2

(
1− 1

4ǫe2f20

)
. (90)
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Gravitational Bag-like Solutions

• The outside nonlinear gauge field (84) is a static radial

electric field of the explicit form:
√

−F 2
out(r) =

√
2 |Er

out(r)| =
1

4ǫχ2f0

(
1− 24ǫχ2

r2

)
, (91)

where again we have used (86) and (88). In (91) there is a

Coulomb piece in addition to a non-zero background

constant radial electric field:

|Er
background| =

1√
2
e2(+)f(+) =

1√
2 4ǫχ2f0

. (92)

Thanks to the latter the Coulomb field is completely

cancelled at the horizon.
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Gravitational Bag-like Solutions

• The outside scalar “dilaton” is constant (85) and the energy

density (ρ = −T 0
0 ) reads (using again (86), (66) and (88)):

ρout(r) ≃ U
(standard)
(+)

− e2(+)f
2
(+)

(r2(+)

2r2
−
r4(+)

4r4

)

=
1

4ǫχ2

(
1− 1

4ǫe2f20

)
− 1

ǫe2f20 r
2

(
1− 24ǫχ2

r2

)
. (93)

Obviously (recall in (93) r > r(+) ≡
√
24ǫχ2):

ρout(r) ≤ U
(standard)
(+) =

1

4ǫχ2

[
1− 1

1 + ǫM2
1 /M2 + ǫe2f20

]
< ρin =

1

4ǫχ2
.

(94)
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Gravitational Bag-like Solutions

The above solution (82)-(94) is a electrovacuum gravitational
bag-like configuration on the (+) flat region of the effective

scalar potential which mimics some of the properties of the MIT

bag. Indeed:

(i) In the inner finite volume space region below the horizon

(r < r(+)) the vanishing vacuum value of the gauge field (first

Eq.(74)) implies absence of confinement of charged
particles .

(ii) According to (94) the vacuum energy density ρin in the

inner finite volume space region (for r < r(+)) is larger than the

energy density ρout in the outside region.
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Gravitational Bag-like Solutions

There are, however, other properties of the present

electrovacuum gravitational “bag” solution which are

substantially different from those of the MIT bag and which

rather resemble some of the properties of the solitonic

“constituent quark” model:

(a) It is charged (the overall charge Q is non-zero (87)).

(b) It carries non-zero “color” flux to infinity – because of the

non-zero background constant radial electric field (92).
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Conclusions

• Non-Riemannian volume-form formalism in gravity/matter

theories (i.e., employing alternative non-Riemannian

reparametrization covariant integration measure densities on

the spacetime manifold) naturally generates a dynamical
cosmological constant as an arbitrary dimensionful

integration constant.

• Within non-Riemannian-modified-measure minimal N = 1

supergravity the dynamically generated cosmological

constant triggers spontaneous supersymmetry breaking and

mass generation for the gravitino (supersymmetric

Brout-Englert-Higgs effect).

65



Conclusions

• Within modified-measure anti-de Sitter supergravity we can

fine-tune the dynamically generated cosmological integration

constant in order to achieve simultaneously a very small

physical observable cosmological constant and a very large

physical observable gravitino mass – a paradigm of modern

cosmological scenarios for slowly expanding universe of

today.

• Employing two different non-Riemannian volume-forms leads

to the construction of a new class of gravity-matter models,

which produce an effective scalar potential with two infinitely

large flat regions. This allows for a unified description of both

early universe inflation as well as of present dark energy

epoch.
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Conclusions

• For a definite parameter range the above model with the two

different non-Riemannian volume-forms possesses a

non-singular “emergent universe” solution which describes

an initial phase of evolution that precedes the inflationary

phase. For a reasonable choice of the parameters this model

conforms to the Planck Collaboration data.

• Adding interaction with a special nonlinear (“square-root”

Maxwell) gauge field (known to describe charge confinement

in flat spacetime) produces various phases with different

strength of confinement and/or with deconfinement, as well

as gravitational electrovacuum “bags” partially mimicking the

properties of MIT bags and solitonic constituent quark

models.
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Conclusions
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