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Abstract

The imaginary part of the Feynman amplitude of the W-loop con-
tribution to the Higgs decay into two gammas (viewed as a function
of the square of the off shell Higgs momentum) is finite and unam-
biguous. It is presented as the product of an invariant amplitude A
times a bilinear in the components of the (on shell) photon momenta
factor which takes the Ward identity into account. The unsubtracted
dispersion integral of A is convergent and reproduces the amplitude
computed by R. Gastmans, S.L. Wu and T.T. Wu [GWW]. In partic-
ular, the decoupling theorem, criticized as an unjustified assumption
in a subsequent paper [SVVZ12], is obtained as a corollary. The result
makes the discrepancy between the observed decay rate of the Higgs
into two photons and the Standard Model prediction larger than cur-
rently believed and hence points to a possible sign of new physics.
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1 Introduction

In a pair of papers [GWW1, GWW] R. Gastmans, S.L. Wu and T.T. Wu
challenged earlier calculation [EGN, SVVZ] of the W-loop contribution to
the Higgs boson decay into two gammas. The authors saw the origin of the
discrepancy in the use of dimensional regularization. A number of authors
[DP, HTW, J, MZW, SZC, SVVZ12, W14] disputed the revised result but
they all used some kind of regularization (mostly dimensional again). The
controversy is interpreted in [CCNS] as a manifestation of a regularization
ambiguity.

Here we offer a different calculation of this contribution which uses only
(absolutely) convergent integrals with no need for regularization and we con-
firm the result of [GWW1, GWW]. This is achieved by first computing
the discontinuity of the Feynman amplitude M,,, (continued analytically in
the Higgs’ momentum square to the region p? > 4M? where M is the mass
of the W-boson) and then reconstructing the real invariant amplitude as a
dispersion integral.

The imaginary (or absorptive) part of the amplitude, computed via the
Cutkosky rules [C, R], is finite, as usual. We present it in the form:

N —3e%g
\gmMuV(klak?) = &TTMPMV A(T)> (11)
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T = ek p = ki + ko, (1.2)

where P, is a transverse bilinear combination of the (on shell) photon mo-
menta k’l, k’g,

P/W = k’lyk‘gu — (k‘lk‘g) mz k’iLPMV =0= kgp/wa (13)

reflecting the Ward identities, and A denotes the absorptive part of the
invariant amplitude. The full invariant amplitude F is then given by the
unsubtracted dispersion integral of A, which is absolutely convergent, real
for p? < 4M?, and reproduces the result of [GWW1, GWW].

Throughout the paper we work in the unitary gauge in which the one
loop calculations are drastically simplified and the time-honored dispersion
theoretic procedure (that goes back to Schwinger) is particularly transparent.



2 Absorptive part of the decay amplitude

We are working with physical (outgoing) photon lines with on-shell momenta
k1, ko, orthogonal to the corresponding polarization vectors (i, (s:

k2 =0=k3, k1l =0 = ko, (Y. (2.1)

This means that we can ignore terms proportional to ki, or ky, in the ampli-
tude (cf. [GWW]). The three Feynman graphs corresponding to the 1-loop
W-contribution are displayed on Fig. 1 (taken from [GWW] together with
the 4-momenta on the internal lines). Clearly, the contribution M3 can be
obtained from M by exchanging the external labels:

M ki, pi; ko, v) = My(ko, vi kb, ). (2.2)

Here and below we are using the conventions and notation of [GWW], as well
as most of their calculations, both accurate and pedagogically written.

Figure 1: Feynman graphs for the W-loop contribution to the Higgs decay.

The W-propagator in the unitary gauge has the form:
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The Cutkosky rules allow to obtain the imaginary part of the amplitude,
by replacing the denominators ¢? — M? +ie in the unitarity cut corresponding
to g =k +p/2 by —im(q°)d(¢* — M?). If Ap denotes the imaginary part of
a Feynman amplitude with such a unitarity cut, then one obtains:

g, [ Fou (e, ki, ko)
Ar = /(27T)4 [(k+2)* — M2 +i€] [(k—2)" — M2+ id]

1 2
=~y / d*k 0(ko) d(k.p) & <k2 T Mz) F; (2.4)
the tensor valued function F),, is determined by the Feynman rules for the
corresponding graphs.
In the rest frame of the (off-shell) momentum p of the decaying Higgs-
boson, taking the z-axis along the space-like vector k; — ks, the d-functions
allow to perform the integration in k° and |k| with the result:

2
= (VP20) = ko =0, |k|2:%—M2:M2(7—1)
E = (0,k), k=]|k|(sinf cosyp, sinfsin ¢, cosh)

1
(k1 — ko). k = —M+71—1cos, 7>1. (2.5)

\/P

We thus obtain:

Ap = — (0, K), oy, ko) dQ2 (2.6)

\/1 — 7'—1 /
where the last integral is over the 2-dimensional sphere, d€) = sinfdf dy,
0<60<m 0<¢<2r at fixed ko(= 0) and |k| given in (2.5).

In the triangular graphs M; and M3 there is one more propagator in the
denominator in F},,. It reads:

ky — k
M? — (k+ = 5 22 — oM (1 £ V1 — 71 cosb); (2.7)

it does not vanish for 7 > 1 and hence, the integral (2.6) is well defined.
Its computation (sketched in Appendix A) follows the intermediate steps of
[GWW], with the advantage that all cancellations appear in an absolutely
convergent (rather than superficially divergent) integral.



The resulting absorptive part A of the invariant amplitude, that takes all
three graphs on Fig. 1 into account, vanishes for 7 < 1 and is given by

2 1 14+ v1—771
A=C (———2) 1n+—7— for > 1. (2.8)
2\ T 1+ V14771

The outcome is not controversial: it agrees with both Egs. (3.54) (3.55) of
[GWW] and with the result of the earlier work [SVVZ].

3 The dispersion integral

In accord with the Ward identity for the electromagnetic interactions we
define the invariant decay amplitude F by:

—3e%g

Muu(klv k2) = ST2M

P,, F(r), (3.1)
where P, is given in (1.3).

The vanishing of the imaginary part of F for 7 < 1 (in particular for
Ty = m%/AM?), cf. (2.8), tells us that the invariant amplitude is real in
the domain of interest. We identify F (for 7 < 1) with the unsubrtacted
dispersion integral which is absolutely convergent:

Fry = L / T

T y—T1
1 2 1
— {— + (— - —2) arcsin? ﬁ}
T T T
5 22
> 3 + Al + O(7?) for |7| < 1. (3.2)

(The small 7 expansion in the last equation can be obtained directly from the
dispersion integral using the change of variables y = (1 — %71, 0 < 8 <1
and expanding the result around 7 = 0.) Eq. (3.2) agrees with the result
obtained in [GWW] and differs by an additive constant, 2/3, from the one
obtained in [SVVZ] which uses dimensional regularization (DR):

2 1 2 1

Fpr(T) =3+ =+ (= —= ] arcsin® /75, 7<1. (3.3)
3 T T T2

To summarize: the assumption that the invariant amplitude F is given

by the convergent dispersion integral without subtraction yields the result of
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[GWW], consistent with the decoupling theorem. Adding a constant term to
the dispersion integral is of course possible, as always, but, given that there is
no H~~ coupling in the Standard Model Lagrangian, it does not seem to be
justified by any physical requirement. (We do not view the agreement with
a calculation using dimensional regularization as a physical requirement.)

Added note. After our paper was first posted in the archive we received
several comments that deserve mentioning. Roman Jackiw acquainted us
with his letter to William Marciano in which he points out that the result of
[GWW] can be obtained by a 4-dimensional calculation dealing with conver-
gent integrals only, taking a surface term into account (that does not appear
in dimensional regularization). Other instances of finite radiative corrections
have been considered earlier in his paper [J00]. Jiri Horeisi kindly acquainted
us with his and M. Stohr’s paper [HS] in which a similar calculation was per-
formed but the authors argued that the convergent dispersion integral needs
a subtraction in order to fit the ”Goldstone boson model” in the limit of
vanishing W-mass, M — 0. A similar argument is given in [SVVZ12]. It is
based on the assumption that the ratio g/M, proportional to the square root
of the Fermi coupling constant, stays finite for M — 0. In this limit, in which
T — 00, the absorptive part of the Higgs decay amplitude vanishes identi-
cally. We would not take the behavior in such a singular and unphysical limit
as a basic requirement in the Standard Model. (Giving it often the name of
"equivalence theorem”, as quoted in [J], does not make it more persuasive.)
Concerning the worry expressed in a second version of [J] (as pointed out to
us by Johannes Bluemlein), about the ”worse UV singularities in the unitary
gauge” , we would like to reiterate that the unitary gauge is perfectly reliable
when no divergences are encountered and hence no symmetry is violated.
We thank our correspondents, as well as John Ellis, for their interest in our
work, for their criticism (even if we disagreed with some of it) and for the
additional references.

4 Concluding remarks

The Higgs decay amplitude into two photons is not expected to lead to any
ambiguity as there is no direct coupling between the Higgs and the photon
fields in the Standard Model. The claim then that different regularizations
of the W loop contribution to this process may yield different results [CCNS]
is worrisome. Here we propose a dispersion theoretic calculation of the decay



amplitude which deals uniquely with absolutely convergent integrals. The
only assumptions involved are: 1) the extraction of a bilinear in the pho-
ton momenta factor (taking the Ward identity for the photon vertices into
account) in front of the invariant amplitude F, and 2) the absence of a con-
stant term in the (convergent) dispersion integral. Both assumptions appear
natural to us - being routinely made since the calculation of the photon self
energy in QED.

The difference in F and Fpg, Eqgs.(3.2) and (3.3), is not just of academic
interest. It has a big impact on the value of the width of the decay H° — ~7,
the best measured decay mode in the searches for the Higgs boson at LHC.

The matrix element of the decay, including diagrams with both W -bosons
and t-quarks in the loops, is:

—3e2 4
M, = 87]\5 » {fwm n 53@)} (4.1)

Here Fy is the contribution from the W-boson loops. At 7 < 1, for the
considered here two different approaches, it equals:

Fw = F(1), Unsubtracted dispersion integral

2
= Fpr(T) = 3 + F(1), Dimensional regularization (4.2)

where F is given by (3.2). F; describes the contribution from the top-quarks
diagrams. At 7, = m%/4m? (< 1), we have (see, e.g., [MZW]):

1+ (1 - l) arcsin? ﬁ} . (4.3)

Ty

Filn) = —=

Ty

At the measured value of the Higgs mass: mpy ~ 125GeV, we have
7 =0.61 and 7, = 0.13. At this value of my, for the ratio of the Higgs boson
widths T'gww /T pr of the two approaches we obtain:

Taww _ | F+ 35 F/?
I'pr | Fpr + 5 Fil?

i.e. the predicted value in the Standard Model is reduced more than twice.
Interestingly, there is an indication that the experimental decay rate is larger
than announced [Wu], so that the discrepancy between theoretical prediction
and experimental result appears to be even more pronounced. One can spec-
ulate (cf. [Wu]) that this may be signaling the existence of new charged
particles that contribute to the Higgs decay into two photons.

~ (.48, (4.4)
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5 Appendix: Computation of P,, A(T)

The evaluation of the absorptive part of M, (ki,k2) is reduced (following
the steps in [GWW]) to the following integrals:

Jm/ d*k 1
P2 ie] [(k-2)" = M2 ie] [(k - 9)° - M2t
B B _4M2
- 87Tp2 Ia 5_ ]- p2 ) (51)
B Hdr 1 14+
_/_1 1_533_311(1(@),0<5<1, (5.2)

g 2
_ .z
- 16mp? (k1 = Kau) . (5.3)
T xda
- [ - gl-a, (5.4)
\sm/ d'k Ky
(27) [(k‘%— ) M2+25} [(l{:—gf M +25} [(l{:—%) M2+25]
e 2 ’
x%d
K= /1 1—555 52[1 2] (5.6)
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