

CMS – an Introduction

Frank Hartmann

A try to share the feeling we have these days when working in the cavern and preparing the last stages

Questions for the Standard Model and Beyond

LEP, SLC and Tevatron: established the understanding of physics at energies up to Vs ~ 100GeV Now, what about new particles with masses above 200-300 GeV – or even TeV?

1. SM has an unproven element: the generation of mass Higgs mechanism ? other physics ? Answer will be found at $\sqrt{s} \sim 1$ TeV e.g. why $M_{\gamma} = 0$, $M_Z \sim 90$ GeV/c²

2. SM without Higgs gives nonsense at LHC energies At $\sqrt{s} > 1$ TeV probability of $W_L W_L$ scattering > 1 !! The SM solution: Higgs exchange cancels bad high energy behaviour.

Even if the Higgs exists, all is not 100% well with the SM alone: Next question is "why is the (Higgs) mass so low"? If SUSY is the answer, it must show up at O(TeV) Recent: extra dimensions. Again, something must happen in the O(1-10) TeV scale if the above issues are to be addressed

Questions for the Standard Model and Beyond

3. SM is logically incomplete Does not incorporate gravity. Superstring theory ? Supersymmetry, extra space-time dimensions ?

4. SM contains too many (arbitrary) parameters

So, here's the GOAL: \rightarrow

Experimentally New particles/new symmetries/new forces?

⇒Higgs boson(s), Supersymmetric particles, Z', … Extra space-time dimensions: gravitons, black holes, Z' etc. ?

(CMS) Design Criteria

Very good muon identification and momentum measurement Trigger efficiently and measure sign of TeV muons dp/p < 10%

High energy resolution electromagnetic calorimetry $\sim 0.5\%$ @ E_T ~ 50 GeV

Powerful inner tracking systems Momentum resolution a factor 10 better than at LEP

Hermetic calorimetry Good missing E_T resolution

(Affordable detector)

Transparency from the early 90's

Experimental Challenge

LHC Detectors (especially ATLAS, CMS) are radically different from the ones from the previous generations

High Interaction Rate

pp interaction rate 1 billion interactions/s
Data can be recorded for only ~10² out of 40 million crossings/sec
Level-1 trigger decision takes ~2-3 μs
⇒ electronics need to store data locally (pipelining)

Large Particle Multiplicity

~ <20> superposed events in each crossing
~ 1000 tracks stream into the detector every 25 ns
need highly granular detectors with good time resolution for low occupancy
⇒ large number of channels (~ 100 M ch)

High Radiation Levels

⇒ radiation hard (tolerant) detectors and electronics

LHC, CERN's Flag Ship and its Detectors

25 ns bunch spacing \Rightarrow 2835 bunches with 10^{11} p/bunch

Design Luminosity: 10³⁴cm⁻²s⁻¹ ⇒100 fb⁻¹/year

Stored energy / beam: 350 MJ

LHCb

Exploded View of CMS

The CMS Collaboration

	Number of Laboratories	
Member States	59	
Non-Member States	67	
USA	49	
Total	175	
	# Scientific	
P	Authors	
Member States	Authors 1084	とうとない
Member States Non-Member States	Authors 1084 503	というと見ていてい
Member States Non-Member States USA	Authors 1084 503 723	K S S S S S S S S S S S S S S S S S S S

Associated Institutes		
Number of Scientists	62	
Number of Laboratories	9	

CONSTRUCTION

CMS Site at Point 5 (Cessy) in 2000

Assembly of Iron Yoke

10

Swiveling of the Coil

HCAL Endcap Swords to Ploughshares !

CMS Surface Hall in Feb 2006

Surface Hall: Endcaps

Test of a slice of all sub detectors on the surface; Magnet ON

MAGNET TEST & COSMIC CHALLENGE

The Dummy Tracker, That was FUN

Closing CMS for the First Time – July 2006

Magnet Test & Cosmic Challenge

Run 2605 / Event 3981 / B 3.8 T/27.08.06

CERN PRESS RELEASE 13 September 2006

Mammoth CMS magnet reaches full-field at CERN

Tests show CMS detector will be ready for data

20

4T operation also tested

ALL SLICES DOWN

Experiment Cavern

Lowering of Heavy Elements

Start YE+3 lowering (30 Nov 2006)

Heavy Lowering: +z Endcap Disks

YB+2 Lowering (19 Jan '07)

HB+ Lowering (13 Feb '07)

Central Wheel arriving in the Dungeon

Insertion of HCAL Barrel

HF Raiser Test

Lowering of YB-1 and YB-2 (October)³⁵

Completion of Services on YB0 Nov. '07

the la series

Estimated ~50,000 man-hours of work in last 5 months!!

Scale of the project (huge):

- Install 18 km of Tk cooling pipes with specia insulation and wvb.
- Install over 1 km of cables trays (many types):
 - Standard
 - Cooled Tk radial
 - Cooled EB-LV radial
 - Cooled EB-LV periphery
- Install 100 km of tracker LIC cables
- Install 80 km of EB cables, optical fibers and pipes
- Install 19 km of HB cables, optical fibers and pipes
- Install 30 km of Tk optical fibers
- About 6,100 cables, 700 optical fiber cables/bundles, 700 pipes for a grand total of about 250km and tens of thousands connection!

YE-3 lowered and moved over FIN

TODAY: All elements are in the cavern final comissioning steps are ongoing
Also our technicians firmly believe in our goal 🙂 KOMMAKTHOIÙ MOONHOIÙ COREHOUG. (CMS) Russian There is no HIGGS !!! .)

THE SOLENOID

Winding of the Coil

- Passive protection by Quench-Back effect
- Al stabilized NbTi conductor (insert of CMS)
- Indirectly cooled at 4.5 K by thermo siphon circuits
- Inner winding vacuum impregnated with epoxy resin

Central magnetic induction 4 TNominal current20 kAStored energy2.7 GJMagnetic Radial Pressure64 Atmospheres!

Assembly of the Coil

Drift Tubes – DT Resistive Plate Chambers – RPC Cathode Strip Chambers – CSC

MUON DETECTORS

Cosmic Muon may 2006

alignment data bases, ...,. Displayed on IGUANA Event Display. May 2006

ISTALLATION OF THE LAST OF THE 250 DT CHAMBERS: IN THE CAVERN. IN WHEEL YB-2 the 26 Oct.2007

HADRONIC CALORIMETER

Hacosmioismenter (CALL) ato SiXI5 te

HB- insertion complete on 27 April 2006 on surface

ELECTROMAGNETIC CALORIMETER

Assembly of ECAL

Insertion of Barrel ECAL

ECAL Barrel competed Jul'07

66 Million Pixel 10 Million Strips

THE TRACKER

The Inner Tracker of CMS

PIXEL

Sensor technology: n+ implant in n bulk on pixel side Operation: -10 to -15°C

- 40 MHz clock, Buffer data for 3.2µs for L1 accept
- At r = 4.4cm

60 MHz/cm² at peak LHC luminosity (L=1x10³⁴ cm)²⁴

 $Dose = 3x10^{14} n_{eq}/cm^2/yr$

18M forward and 48M barrel pixels

Tracking

- 3 space points to |η|=2.5
- Seeds most tracking > 95% efficiency
- Vertexing
- Standalone in High Level Trigger (HLT)

Half disc of Forward Pixels

Forward Pixel: 672 plaquettes required

Pixel Test Insertion into Tracker

Pixel Barrel plus Endcaps READY

STRIP TRACKER

Module Production and Test

400 Different Pieces Makes onePetal, a Fairly Complicated Object:We needed 288 in total! We assembled110 in Karlsruhe

Si Tracker

Reconstructed Cosmic Ray Tracks

Optical Fibres Dressed onto the +End of the Tracker

Multiservice Cables Dressed

Tracker on the Way Down

- 6.5 tons
- 100 MCHF
- 2000 man years
- 100 m deep shaft below
- Not insured ;-)

On the hook!

 Several frightened physicists, including me!

FLY IN

Insertion of the CMS Tracker into the Heart of CMS

DONE, TRACKER IS IN(Sunday 15.12.01.30)⁵⁵

LAST PIECES

Beampipe

CRUZET: Cosmic Muon

INFRASTRUCTURE

Civil Engineering Overview (mid 2006)

and today ...

Slides and pictures "borrowed" from

- CMS Outreach
- CMS Week Plenaries, mostly Virdee and Ball
- Tracker slides from myself, M.Krammer & J, Incandela
- Thx to M. Hoch for nice actual Tracker Photos