

3

How can we solve the mysteries of the Unive

I that remains to do in physics is to fill in the sixth decimal ace

(Albert Michelson,

nere is nothing new to be discovered in physics now. I that remains is more and more precise measurement.

(Lord Kelvin, 1

ic rays (1913) - first discoveries* in particle physics Measured energy spectrum

Chergy into mass

produce all these particles ... and more

Early of Iradion Common

1976	First idea
1984	R+D starts
1987	Proto-Collaborations
1989	First public presentation by E
1994	Approval of LHC project
1996-1998	Approval of experiments (ATLAS, CMS, ALICE, LHCb
2008	Construction complete

Circumferenc

26 659 m

Magnets

9300

Dipoles

1232

Magn. field (max.)

8.33 T

RF Cavities

2 x 8

7x10¹²eV Beam Energy 10³⁴ cm⁻² s⁻¹ Luminosity Bunches/Beam 2835 10¹¹ Protons/Bunch 7.5 m (25 ns) 7 TeV Proton Proton colliding beams Bunch Crossing 4x107 Hz Proton Collisions 109 Hz **Parton Collisions New Particle Production** 10⁵ Hz

3 questions for the 21st century

- 1 How do particles acquire mass?
- 2 Does 'Supersymmetry' exist?
- 3 How many dimensions has space?

mass?

The Standard Model makes no (mathematical) sense without the Higgs field either they are massless, or if they are given masses, the mathematics of the theory collapse.

Peter Higgs

1 TeV____

100 GeV ___

1 GeV ___

1 MeV ____

0.01 eV ____

11990 1 1019

fills all of space since the 'spontaneous symmetry breaking' at Big Ban

new type of interaction

'cosmic DNA': gives particles their specific properties (e.g. mass)

Metaphore

A cocktail party ...

.. a famous guest wants to cross the room...

.. but everybody wants an autograph - the guest is difficult to accelerate...

The Higgs field ... a new particle is created ...

... the Higgs field gives the part its 'inertia' ...

A rumour originates ...

The Higgs field is excited and receives energy....

.. many guest clump together to discuss the rumour...

... which produces a "real" field particle ...

iiggs ai iii iadisii

The 'Higgs' field gives mass (inertia) to particles "friction with the vacuum"

ortant note:

e could also be other e) fields or particles have the same effect e Higgs field

How electrons and quarks acquire a mass

Is there a deeper SUPERSYMMETRY between matter and fields?

all matter particles have a field partner all field particles have a matter partner

social

anti-social

Integer spin	Spin 1/2
selectron (S=0)	electron
squark (S=0)	quark
photon (S=1)	photino

vvily Capcioyillically.

- 1) A fundamental symmetry of space and time
- 2) "Protection" of SM particle masses (< 10³ GeV) from vacuum fluctuations up to Planck Scale* (10¹⁹ GeV)

constants

Why is gravitation so weak?

$$F_G = \left(\frac{m_{proton}}{m_{Planck}}\right)^2 \cdot \frac{1}{r^2} \approx 10^{-38} \cdot \frac{1}{r^2}$$

Planck length
$$l_{\rm P} = \sqrt{\frac{\hbar G}{c^3}} = 1.6 \cdot 10^{-35} \, \mathrm{m}$$

Planck mass

$$m_{\rm P} = \sqrt{\frac{\hbar c}{G}}$$

 $m_{
m P} = \sqrt{rac{\hbar c}{G}}$ = 2.1 · 10⁻⁸ kg = 1.2 · 10¹⁹ GeV

Planck time

$$t_{
m P} = rac{l_{
m P}}{c} = rac{\hbar}{m_{
m P}c^2} = \sqrt{rac{\hbar G}{c^5}}$$
 = 5.4 · 10⁻⁴⁴ s

3) Suggests unification of three forces at a single unification point ($\sim 10^{17}$

- 4) Possible explanation of cosmological matter-antimatter asymmetry
- 5) Dark matter?

Matter?

SUSY = Dark matter particles left over from Big Bang?

Is gravity so weak because 'gravitons' escape into the small extra-dimensions? (Arkani-Hamed et al., Randall-Sundrum)

Does gravity act in more than 3 spatial dimensions?

Validity of Newton's Law tested to $\sim 10 \ \mu m$

LHC collisions may produce 'mini' Black Holes

Characteristics:

Mass $\sim 10^{-21}$ g Lifetime $\sim 10^{-26}$ s Decay \sim symmetric, many hundred low-E particles

String theory (only) works in 9+1-dimensional space Particles + fields are oscillating 'strings' (size ~10⁻³⁵ Different vibration patterns = different particles Spectrum of lowest vibrations includes 'graviton'

Many problems:

How did the six additional dimensions curl up into Planck length?

No prediction on the scale of the supersymmetry breaking

THE TENED TO STITLE A SECTION OF THE

We know what matter is made of.

We know the principle steps in the evolution of the Universe.

Where is the antimatter gone? (Matter-Antimatter asymmetry)

Where is the link between quarks and leptons ($Q_e + Q_p = 0$)

Why three families?

What caused inflation?

What is dark energy - why is the cosmological constant so small?

What is the origin of the fundamental constants?

What is a particle?

What is VACUUM?

Flammarion

End of part 2

Questions?