Flavour physics of the top quark and projecting on the Higgs to light

Gilad Perez

Weizmann Inst.

Physics at the High-Luminosity LHC

Flavor physics <=> precision test => good for HL

mass reach $\propto (\text{Lumi})^{\frac{1}{7}}$

◆ Slow progress in energy frontier, still conventional searches should push forward. (will be done in any case regardless of what we discuss today...)

More info' e.g: Salam-Weiler, http://collider-reach.web.cern.ch/collider-reach/

mass reach $\propto (\text{Lumi})^{\frac{1}{2}, \frac{1}{4}}$

◆ Faster progress in "precision frontier", not too hard physics scale, relatively weak coupling <=> this talk ...

Outline

◆ The case for top FCNC & its challenge, lurking Standard Model (SM) background.

◆ Top B-phys., alternative incl. & excl. way for precision flavor tests at the LHC.

• Summary.

• HL Higgs-to-light projections: powerful inclusive (charm); miserable exclusive (post ATLAS $h \to J/\psi\gamma$).

Intro: top & flavor (post LHCI)

- The top is a quark, a part of the flavor sector. (not enough for a dedicated talk)
- Special among quarks, reinforced by LHC1:

SM: the largest Yukawa, but actually almost maximal because of perturbativity -

because of stability (raise of < 3% in top Yukawa => weakless universe)

Degrassi, Vita, Elias-Miro, Espinosa, Giudice, Isidori & Strumia (12)

and, because it is the only quark	
\w (proven) coupling to the Higgs -	

μ	ATLAS+CMS
T	0.97±0.23
b	0.71±0.31
t	2.2±0.6 (Moriond)

$$\mu_x = \frac{\sigma_h^x BR_x}{\sigma_h^{x,SM} BR_x^{SM}}$$

Top and flavor, potential progress at the LHC & HL-LHC

• The (established) top-Higgs couplings suggests that it's linked to new physics (NP) related to electroweak sym' breaking and/or the hierarchy problem.

- ◆ There are many forms in which top-phys. probe NP scenario. The charge: not to discuss "top" as a signature of other BeyondSM particles, but top in its own. Focus on 2 case studies, potentially relevant to HL-LHC:
 - (i) t-FCNC, clearly rare process but also well motivated theoretically (see below);
 - (ii) t-bphys: leptonically decaying top => flavor-tagging b-quark => flavor factory.

*t*FCNC as new phys. probe, experimental challenges & opportunities

tFCNC status & EFT

• GIM+loop: $t \rightarrow c$, $u Z/h/\gamma$, SM null test. $BR(t \rightarrow qZ, \gamma, G) \sim 10^{-12}$.

(Díaz-Cruz (89); Eilam, Hewett & Soni (90))

•
$$t \rightarrow qZ$$
:
Br($t \rightarrow qZ$)<0.05%

• $t \rightarrow qh$: Br($t \rightarrow ch$)<0.56%

• $qg \to t$: Br $(t \to ug)$ <3.1 × 10⁻⁵, Br $(t \to cg)$ <1.6 × 10⁻⁴

ATLAS-CONF-2013-063

CMS-TOP-12-037

CMS-PAS-HIG-13-034

• $qg \rightarrow t\gamma$: Br $(t \rightarrow u\gamma)$ <0.0161%, Br $(t \rightarrow c\gamma)$ <0.182% (assuming tuq vanishes)

CMS-PAS-TOP-14-003

Cen Zhang, Top14.

RunII projections LHC (see HL below): LHC (100fb⁻¹): $BR(t \to qZ, \gamma) \gtrsim 10^{-5}$.

• Effective field theory (EFT), consider $t \rightarrow cZ$ for simplicity:

$$\bar{t}_R \gamma^{\mu} c_R(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H)$$
, $\bar{t}_L \gamma^{\mu} c_L(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H)$ and $\bar{t}_L \gamma^{\mu} \sigma_3 c_L(H^{\dagger} \sigma_3 \overset{\leftrightarrow}{D}_{\mu} H)$.

tFCNC status & EFT

• Effective field theory (EFT), consider $t \rightarrow cZ$ for simplicity:

$$\bar{t}_R \gamma^{\mu} c_R(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H), \quad \bar{t}_L \gamma^{\mu} c_L(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H) \quad \text{and} \quad \bar{t}_L \gamma^{\mu} \sigma_3 c_L(H^{\dagger} \sigma_3 \overset{\leftrightarrow}{D}_{\mu} H).$$

• Generic NP tale:

$$\begin{split} &\mathrm{BR}(t\to cZ)_{\mathrm{dim}\,6} \sim \left(\frac{g}{2c_W}\right)^2 \times V_{23}^2 \times \frac{v^4}{M_*^4} \\ &\sim 10^{-5} \times (200,0.3,2) \times \left(\frac{V_{23}}{1},\frac{V_{23}^L}{V_{cb}},\frac{V_{23}^R}{\frac{m_c}{m_t V_{cb}}}\right)^2 \times \left(\frac{700\,\mathrm{GeV}}{M_*}\right)^4 \\ &\sim 10^{-5} \times \left(\frac{3\,\mathrm{TeV}}{M_*}\right)^4 \\ &\stackrel{\mathrm{generic \, reach}}{&} \end{split}$$

- Model predictions:
 - (i) almost impossible for loop induced NP;
 - (ii) only < TeV NP can be probed, preferably \w RH, non-MFV structure ...
 - (iii) generically fulfilled by composite Higgs models, \w no extra th' effort ...

2 slides on composite Higgs $=> t \rightarrow cZ$

$$m^f \propto \lambda_L^f \times \lambda_R^f$$
, $V^{\text{CKM}/L}$, $V^R \propto \frac{\lambda_L^i}{\lambda_L^j}$, $\frac{m_c}{m_t V_{ij}^{CKM}}$

same structure as in EFT

see:

Gherghetta & Pomarol (00) Huber & Shafi (11)

• $t_R \rightarrow c_R Z$ in composite models could be large. Agashe GP & Soni (06)

Composite natural $t \rightarrow cZ$

• $t \rightarrow cZ$ in custodial composite models could be small.

Agashe, Contino, Da Rold & Pomarol (06)

• $t \rightarrow cZ$ in natural custodial composite models should be large.

As both LH & RH tops needs to be composite, Azatov, Panico GP & Soreq (14)

$$BR(t \to cZ) \sim 10^{-5} \left(\frac{700}{M_*}\right)^4.$$

$$t_L \qquad t_R \qquad t_R$$

- Two extra generic predictions:
 - (i) tops should be RH polarized; (ii) should be a charm (tagger)

Azatov, Panico, GP & Soreq (14)

The SM semi-irreducible background

• tZj in the SM is important once BR($t \rightarrow cZ$) < 10⁻⁵ is reached.

Campbell, Ellis & Rontsch (13)

• Current bound is BR($t \rightarrow cZ$)~ 5x10⁻⁴, more serious studies required before the experimentalists actually go below 10⁻⁵...

I apologise if it exists but I failed to find it.

The SM semi-irreducible background

• Similar story for BR($t \rightarrow ch$) for NP, but with suppression:

Agashe & Contino (09)

$$y_{tc,L} \sim \frac{\lambda_R^t \lambda_R^c}{M_*^2} \frac{v}{f^2} m_t \sim \frac{m_t m_c}{f M_* V_{cb}} \sim 4 \times 10^{-3} \left(\frac{700 \,\text{GeV}}{f}\right) \left(\frac{700 \,\text{GeV}}{M_*}\right),$$

$$y_{tc,R} \sim \frac{\lambda_L^t \lambda_L^c}{M_*^2} \frac{v}{f^2} m_t \sim \frac{m_t^2 V_{cb}}{f M_*} \sim 2 \times 10^{-3} \left(\frac{700 \,\text{GeV}}{f}\right) \left(\frac{700 \,\text{GeV}}{M_*}\right),$$

$$BR(t \to ch) \sim 5 \times 10^{-6} \left(\frac{700 \,\text{GeV}}{f}\right)^2 \left(\frac{700 \,\text{GeV}}{M_*}\right)^2.$$

Azatov, Panico, GP & Soreq (14)

♦ HL projection: BR $(t \rightarrow ch) \sim 10^{-4}$.

ATL-PHYS-PUB-2013-012

- Background: similar story \w thj being the BG \w a twist:
 - Campbell, Ellis & Rontsch (13) (i) SM thj production is small due to cancellation.

Tait & Yuan (00); Maltoni, Paul, Stelzer & Willenbrock (01)

(ii) *thi* production => test for BSM (sign of y_t) => large enhancement. Biswas, Gabrielli & Mele; Farina, Grojean, Maltoni, Salvioni & Thamm; Agrawal, Mitra & Shivaji (12)

• Would be good to check how much the $t \rightarrow ch$ mix \w thj

top B-physics

Top as a flavor factory, basic idea

Gedalia, Isidori, Maltoni, GP, Selvaggi & Soreq (12)

• t-decay => charge of W is fully correlated \w the flavor of b.

• b-decay => charge of *lepton* is correlated \w the flavor of b.

no mixing (OS leptons)

Ex.: \w mixing (SS leptons)

The observables & the asymmetries

Gedalia, Isidori, Maltoni, GP, Selvaggi & Soreq (12)

• Similar to *b*-factories define same-sign asymmetry but also

opposite-sign asym':

$$A^{ss} \equiv \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

$$A^{os} \equiv \frac{N^{+-} - N^{-+}}{N^{+-} + N^{-+}}$$

Sensitive to two class of CP asym':

(i) CPV in mixing; (ii) inclusive CPV in decay.

top B-physics, projections

Flavor & Top at 100 TeV: Maltoni & Soreq (15)

Sensitivity for the Asymmetries:

$$\delta A^{ss} \sim \frac{9.0}{\sqrt{\sigma_{t\bar{t}}\mathcal{L}}} \sim 6(1) \times 10^{-4} \qquad \delta A^{os} \sim \frac{7.6}{\sqrt{\sigma_{t\bar{t}}\mathcal{L}}} \sim 5(0.8) \times 10^{-4}$$

For CP violation only in mixing (no direct CPV):

$$\delta A_{\text{mix}}^{b\ell} \sim 3 (0.5) \times 10^{-3}$$

$$\sqrt{s} = 14 (100) \,\text{TeV} \quad \mathcal{L} = 300 \,\text{fb}^{-1}$$

Bounds on direct CP violation sources (95% CL):

	current	8TeV	14TeV, 50	
$A_{ m dir}^{b\ell}$	1.2%	1%	0.3%	
$A_{ m dir}^{c\ell}$	6%	1%	0.3%	
$A_{ m dir}^{bc}$?	1%	0.3%	

Descotes-Genon and Kamenik, 1207.4483

Conclusions

• HL-LHC order of 10¹⁰ tops => truly precision frontier.

• BR($t \rightarrow ch/Z$)~ 10^{-5,-6}, well motivated in composite Higgs.

Polarization & charm tagging provide support.

• th/Zj backgrounds are important & interfere \w other searches?

• top-Bphys.: possible new way of doing precision flavor physics.

Flavour physics of the top quark and

projecting on the Higgs to light

Gilad Perez

Weizmann Inst.

```
GP, Soreq, Stamou & Tobioka (Feb/15)
GP, Soreq, Stamou & Tobioka (May/15)
```


Physics at the High-Luminosity LHC

Higgs & flavor physics within the SM

- ♦ Higgs in minimal SM, 2 roles:
- (i) induce electroweak (EW) gauge boson masses & unitarization (high-E consistency);
- (ii) induce fermion masses & unitarization (high-E consistency).
- (i) was already tested in a quantitative way (ii) much less & mostly for 3rd gen'. Currently, clueless whether the Higgs mechanism is behind light fermion masses!

• What happens if we just write bare masses to fermions?
Unitarity violation:

$$q\bar{q} \to V_L V_L$$

(where V_L is the longitudinal boson)

$$\sqrt{s} \lesssim \frac{8\pi v^2}{\sqrt{6}m_{b,c,s,d,u}}$$

 $\approx 200, 1 \times 10^3, 1 \times 10^4, 2 \times 10^5, 5 \times 10^5 \text{ TeV}.$

Appelquist & Chanowitz (87).

$$q\bar{q} \to nV_L$$

$$\sqrt{s} \lesssim 23, 31, 52, 77, 84 \text{ TeV}$$
.

Executive sum.: Constraining Higgs-charm univ.

GP, Soreq, Stamou & Tobioka (Feb/15)

- Existing data already constrain Higgs-quarks Univ..
 - (i) Direct constraint: recast VH(bb), taking advantage of 2 working point $c_c < 230$;
 - (ii) the recent ATLAS search to $h \rightarrow J/\psi \gamma$ (see later) yield $c_c < 220$; (assumes Higgs coupling to two photons and/or four leptons is not significantly modified by new physics);
 - (iii) the direct measurement of the total width yield c_c < 140 (ATLAS),120 (CMS);
 - (iv) Global fit to the Higgs signal strength, $c_c < 6$;
 - (v) $tth \text{ data} => c_t > 1.0 \text{ (equivalence to } c_c > 310).$ Higgs univ. excluded!

GP, Soreq, Stamou & Tobioka (Feb/15)

#1 Direct constraint: recast VH(bb)

GP, Soreq, Stamou & Tobioka (Feb/15)

• Idea: use several charm-tagging working points of ATLAS & CMS in their VH(bb) analysis.

$$\mu_b = \frac{\sigma}{\sigma_{SM}} \frac{BR_{b\bar{b}}}{BR_{b\bar{b}}^{SM}} \rightarrow \mu_b + \frac{Br_c^{SM}}{Br_b^{SM}} \frac{\epsilon_{c_1} \epsilon_{c_2}}{\epsilon_{b_1} \epsilon_{b_2}} \mu_c$$

where $\epsilon_{b_{1,2}}$ and $\epsilon_{c_{1,2}}$ are efficiencies to tag jets originating from bottom and charm quark, respectively. μ_c is normalized to be 1 in a case of the SM.

• Each working point yields flat direction:

ATLAS	Med	Tight	CMS	Loose	Med1	Med2	Med3
ϵ_b	70%	50%	ϵ_b	88%	82%	78%	71%
ϵ_c	20%	3.8%	ϵ_c	47%	34%	27%	21%

ATLAS+CMS (stat+MC error)

♦ However, combining points => bound. (reproducing ATLAS/CMS hbb bounds to 10-20%)

New production mechanism VH(bb)

GP, Soreq, Stamou & Tobioka (Feb/15)

•
$$\mu_c = \frac{\sigma}{\sigma^{\rm SM}} \frac{\rm Br}{\rm Br_c^{\rm SM}} = > \text{W SM } VH\text{-production } \mu_c < 30 => \text{ no constraint on } y_c.$$

• However $\mu_c < 30$ for large $c_c > 50$ new production mechanism:

No runaway for c_c

Constraining Higgs-quark universality #2+3

• Width bound: $\Gamma_h < 2.6 \,\mathrm{GeV}$ (ATLAS), $\Gamma_h < 1.7 \,\mathrm{GeV}$ (CMS) => $\mathcal{C}_C < 140, 120$.

GP, Soreq, Stamou & Tobioka (Feb/15)

• Interpretation of ATLAS recent $h \to J/\psi \gamma$ (1501.03276): $\sigma(pp \to h) \times \text{BR}_{h \to J\psi \gamma} < 33 \,\text{fb}$,

• This implies (see later): $\Gamma_{h\to J/\psi\gamma} = 1.42 \left(\kappa_{\gamma} - 0.087\kappa_{c}\right)^{2} \times 10^{-8} \,\mathrm{GeV}$

Bodwin, Petriello, Stoynev & Velasco (13); Bodwin, Chung, Ee, Lee & Petriello (14)

• Getting rid of production: $\mathcal{R}_{J/\psi,Z} = \frac{\sigma(pp \to h) \times \text{BR}_{h \to J/\psi\gamma}}{\sigma(pp \to h) \times \text{BR}_{h \to ZZ^* \to 4\ell}} = \frac{\Gamma_{h \to J/\psi\gamma}}{\Gamma_{h \to ZZ^* \to 4\ell}} = 2.79 \frac{(\kappa_{\gamma} - 0.087\kappa_c)^2}{\kappa_V^2} \times 10^{-2}$,

GP, Soreq, Stamou & Tobioka (Feb/15)

Summary plot, current situation

Higgs to light quarks sensitivity - projections for HL-LHC

GP, Soreq, Stamou & Tobioka, to appear.

Inclusive, charm-tagging

Exclusive projections

• ATLAS result, mapped out the dominant BG: $\sigma_h BR_{J/\psi \gamma} < 33 \, \text{fb}$ arXiv:1501.03276 [hep-ex]

◆ Useful to define ratio that is independent of the production:

GP, Soreq, Stamou & Tobioka (Feb/15)

$$\mathcal{R}_{M\gamma,Z} \equiv \frac{\sigma_h BR_{M\gamma}}{\sigma_h BR_{ZZ^* \to 4\ell}} \simeq \frac{\Gamma_{M\gamma}}{\Gamma_{ZZ^* \to 4\ell}} = \begin{cases} 2.8 \times 10^{-2} \left(\kappa_{\gamma} - 8.7 \times 10^{-2} \kappa_c\right)^2 / \kappa_V^2 & M = J/\psi \\ 2.4 \times 10^{-2} \left(\kappa_{\gamma} - 2.6 \times 10^{-3} \kappa_s\right)^2 / \kappa_V^2 & M = \phi \end{cases},$$

Bodwin, Petriello, Stoynev & Velasco (13); Kagan, GP, Petriello, Soreq, Stoynev & Zupan (14)

$${
m BR}_{J/\psi\,\gamma}^{
m SM} = 2.9 \times 10^{-6}, \; {
m BR}_{\phi\gamma}^{
m SM} = 3.0 \times 10^{-6}, \; {
m BR}_{ZZ^* o 4\ell}^{
m SM} = 1.25 \times 10^{-4}$$
.

• For a given upper bound, $\overline{\mu}_M$, on an exclusive mode, we can write:

$$\mathcal{R}_{M\gamma,Z} < \frac{\overline{\mu}_M}{\mu_{ZZ^*}} \frac{\mathrm{BR}_{M\gamma}^{\mathrm{SM}}}{\mathrm{BR}_{ZZ^* \to 4\ell}^{\mathrm{SM}}}, \qquad \overline{\mu}_M \equiv \frac{\overline{\sigma}_h \overline{\mathrm{BR}}_{M,\gamma}}{\sigma_h^{\mathrm{SM}} \mathrm{BR}_{M,\gamma}^{\mathrm{SM}}},$$

Exclusive, deriving the bound

◆ For a given upper bound we find the following bound:

$$11\kappa_{\gamma} - 10\kappa_{V}\sqrt{\overline{\mu}_{J/\psi}/\mu_{ZZ^{*}}} < \kappa_{c} < 11\kappa_{\gamma} + 10\kappa_{V}\sqrt{\overline{\mu}_{J/\psi}/\mu_{ZZ^{*}}},$$

$$380\kappa_{\gamma} - 380\kappa_{V}\sqrt{\overline{\mu}_{\phi}/\mu_{ZZ^{*}}} < \kappa_{s} < 380\kappa_{\gamma} + 380\kappa_{V}\sqrt{\overline{\mu}_{\phi}/\mu_{ZZ^{*}}}.$$
GP, Soreg, Stamou & Tobioka (May/15)

◆ To project define the following ratios:

$$\overline{\mu}_{M,E} = \overline{\mu}_{M,8} \left(\frac{1}{R_{P,E} R_{\mathcal{L},E} R_{SB,E}} \right)^{1/2} ,$$

$$R_{SB,E} \equiv rac{S_E^{
m SM}/B_E}{S_8^{
m SM}/B_8}, \qquad R_{P,E} \equiv rac{\sigma_{h,E}^{
m SM}}{\sigma_{h,8}^{
m SM}}, \qquad R_{\mathcal{L},E} \equiv rac{\mathcal{L}_E}{\mathcal{L}_8},$$

• Projection for $J/\psi \gamma$:

$$\kappa_c < 11 + (75, 42) \left(\frac{1}{R_{SB,14}} \frac{2 \times (300, 3000) \,\text{fb}^{-1}}{\mathcal{L}_{14}} \right)^{1/4}$$
, assuming $\mu_{ZZ^*} = \kappa_{\gamma} = \kappa_{V} = 1$

Exclusive, deriving the bound

Ratio of signals:

$$\frac{S_{\phi}}{S_{J/\psi}} = \frac{\sigma_h \text{BR}(h \to \phi \gamma) \mathcal{L}}{\sigma_h \text{BR}(h \to J/\psi \gamma) \mathcal{L}} \frac{\text{BR}(\phi \to K^+ K^-)}{\text{BR}(J/\psi \to \mu^+ \mu^-)} \frac{\epsilon_{\phi}}{\epsilon_{J/\psi}}$$

where $\epsilon_{J/\psi(\phi)}$ is the triggering and reconstruction efficiency

• Backgrounds: ATLAS=> dominant is jet -> photon + QCD J/ψ production.

Even more so expected for ϕ : $\frac{B_{\phi}}{B_{J/\psi}} = \frac{\sigma(pp \to \phi j) P(j \to \gamma) \mathcal{L}}{\sigma(pp \to J/\psi j) P(j \to \gamma) \mathcal{L}} \frac{\text{BR}(\phi \to K^+ K^-)}{\text{BR}(J/\psi \to \mu^+ \mu^-)} \frac{\epsilon_{\phi}}{\epsilon_{J/\psi}}$,

$$\overline{\mu}_{\phi} = \overline{\mu}_{J/\psi} \frac{\mathrm{BR}_{J/\psi\gamma}^{\mathrm{SM}}}{\mathrm{BR}_{\phi\gamma}^{\mathrm{SM}}} \sqrt{\frac{\sigma(pp \to \phi \, j)}{\sigma(pp \to J/\psi \, j)}} \frac{\mathrm{BR}(J/\psi \to \mu^{+}\mu^{-})}{\mathrm{BR}(\phi \to K^{+}K^{-})} \frac{\epsilon_{J/\psi}}{\epsilon_{\phi}} = 0.33 \, \overline{\mu}_{J/\psi} \sqrt{\frac{\sigma(pp \to \phi \, j)}{\sigma(pp \to J/\psi \, j)}} \frac{\epsilon_{J/\psi}}{\epsilon_{\phi}}$$

- ♦ For tight selection (ATLAS) $P(j \to \gamma) \sim 2 \times 10^{-4}$ & using PYTHIA to simulate QCD BG, and rescaling from $J/\psi \gamma$: $\frac{\sigma(pp \to \phi j)}{\sigma(pp \to J/\psi j)}\Big|_{\text{Pythia}} \sim 8.5$.
- Projection for $\phi \gamma$:

$$\kappa_s < 380 + (2900, 1600) \left(\frac{1}{R_{SB,14}} \frac{2 \times (300, 3000) \,\text{fb}^{-1}}{\mathcal{L}_{14}} \right)^{1/4}$$

GP, Soreq, Stamou & Tobioka (May/15)

Summary

Inclusive (c-tagging):
$$\kappa_c < 4$$
;

Exclusive
$$(J/\psi\gamma)$$
: $\kappa_c < 40$;

Exclusive
$$(\phi \gamma)$$
: $\kappa_s < 2000$.

GP, Soreq, Stamou & Tobioka (May/15)

- ♦ C-tagging based analysis is just "waiting" for someone to dominate the field.
- ◆ To improve on the exclusive miserable situation, one needs to device new methods, to use the "quiet" nature of the Higgs decay. (new class of jet substructure)
- ♦ What about CMS? Impact of ATLAS new IBL? LHCb?

