Parameterisations of the upgraded ATLAS detector performance at the HL-LHC

Tim Scanlon on behalf of the ATLAS Collaboration

Overview

- Physics Objects
- **Jets**
- Missing transverse energy

- Estimating reconstruction performance
 - Physic objects
 - ➤ HL-HLC configuration
 - Updated ATLAS detector
 - Parameterisations
- Latest performance studies
 - Overview
 - Tracking and muons
 - Primary vertexing
 - b-tagging
- Summary and Plans

energy monojet +MET Leptons **Taus** ATLAS Simulation Preliminary = 14 TeV; [Ldt=300 fb⁻¹; [Ldt=3000 fb⁻¹ **Photons** H→ WW (comb.) b-jets

Vital input to HL-LHC physics projections

11/05/15

Performance

Efficiency

Fake-rates

Resolution

Physic Objects

- Several physics objects of interest
 - Reconstructed using complicated and interconnected algorithms
 - Tracking is central to all objects

- When evaluating performance important to consider
 - > LHC collision scenarios (pile-up, longitudinal beam spot shape)
 - > Detector designs and impact of radiation damage
 - > Tuning of algorithms

HL-LHC Configuration

- Very different collision environment compared to Run 1/2
 - ➤ Luminosity of 5x10³⁴ cm⁻²s⁻¹ corresponds to average of 140 pile-up events
 - To reach 3000 fb⁻¹ a luminosity of 7.5x10³⁴ cm⁻²s⁻¹ maybe needed
 - Pile-up of 200 events (also consider 250 or 300)
 - Different longitudinal beam spot shapes: long-flat vs Gaussian
 - > Important to consider difference scenarios in performance estimates

Upgraded ATLAS Detector

- Essential to upgrade ATLAS
 - Mitigate radiation damage
 - Cope with higher pile-up
 - Maintain or improve performance

Main upgrades towards HL-LHC

- Read-out electronics and DAQ
- Updated trigger system
 - Finer granularity
 - Two hardware trigger levels (L0\L1)
 - Tracking in lower level trigger
- New forward muon detectors
- New inner tracking detector

Upgraded Tracking Detector

- New tracking detector (ITK)
 - > All silicon detector with greater granularity
- Configuration still being explored
 - Study cost versus physics output
 - Described in 'Scoping document' (SD)
 - Released later this year

Caveats

Performance will vary as engineering constraints incorporated

Letter of Intent (LoI) Layout

Lol-Very Forward (Lol-VF) Layout

Parameterisations

- Study different layouts, collision schemes and algorithm tunes
 - ➤ Need to quickly/easily test in physics studies
- Produce fully simulated/reconstructed events?
 - Extremely costly in terms of CPU and time
- Provide parameterisations of performance
 - Measured on fully simulated events
 - ITK + Run 1 calorimeter/muon systems
 - Smear/correct truth level samples
 - Can also be used externally to ATLAS

Status of Studies

- Performance parameterisations provided for ECFA 2013 conference
 - ➤ See ATL-PHYS-PUB-2013-009
- Updates for the scoping document
 - Jets/Missing energy many studies with more sophisticated tools
 - See Richard's <u>talk</u> on Monday
 - Trigger assume will perform as well or better than Run 1
 - More detailed studies underway
 - ➤ Electrons/Photons/Taus photons updated for ECFA 2013
 - Underway: updated efficiencies, resolutions, extended to forward region
 - ➤ **Muons** smearing/efficiency functions available
 - Underway: updated trigger, all ITK layouts, forward region
 - > Tracking: Tracks, primary vertexing and b-tagging
- Overview of latest studies
 - Varying pile-up levels, longitudinal beam spot shape, layouts

Tracks and Muons

- Tracking performance studies
 - ➤ Different ITK layouts, pile-up=140
 - Efficiency, fake-rate and resolution
- ITK provides excellent tracking performance
 - Comparable to performance in Run 1 with 20 pile-up interactions
 - Performance estimate in forward region

Tracks and Muons

- Tracking performance studies
 - Different ITK layouts, pile-up=140
 - Efficiency, fake-rate and resolution
- ITK provides excellent tracking performance
 - Good impact parameter and p_T resolution
 - Resolution degrades in forward region

- > Studies ongoing into other designs, pile-up, radiation damage
- Ultimate conclusions based on impact in physics analyses

Primary Vertexing

- Study primary vertex performance in ttbar samples
 - ➤ Lol ITK layout
 - Test five different pileup scenarios
 - ➤ Run 1 algorithms
- Performance robust even at very high pileup
 - Small drop in reconstruction efficiency at high pile-up

> Also studying newer algorithms and merging rate

Beam Spot Conditions

Study impact of different detector longitudinal (z) beam spot profiles

- \triangleright Gaussian with σ_z =5cm
- Long beam spot ~flat to ±10cm

- Slightly improved performance with long beam spot
 - Possibly extend study to higher pile-up and other signals

b-Tagging

- Extend PV studies to included b-tagging
 - Requires correct hard scatter vertex found
 - Run 1 algorithms
- Performance comparisons
 - Similar performance with 140 pile-up interactions to Run 1
 - Degrades as pile-up increases
 - Insensitive to beam spot shape

b-Tagging

- Performance used in analysis via efficiency maps
 - Parameterised p_T/η/flavour

b-jet efficiency 70% operating point

- Work ongoing to update estimates
 - b-Tagging in the forward region and higher pT
 - HL-LHC tuned/trained algorithms
 - Better understanding of degradation
 - c-jet tagging

Conclusions

- Estimation of object reconstruction performance vital for HL-HLC studies
 - Input to physics sensitivity studies
 - Optimal HL-LHC collision configuration
 - Optimise detector design
- Many challenges
 - > Different collision schemes: pile-up, beam spot shape
 - Pile-up of 200 maybe necessary to achieve 3000 fb⁻¹
 - Multiple detector layouts and radiation damage scenarios
 - > Algorithmic optimisation
 - > Then propagate through physics analyses
- Promising performance at pile-up of 140
 - > First measurements of performance in forward region
 - > Full set of updated parameterisations later this year
 - Including updated physics sensitivity studies

Backup

Hits on Tracks

Number of inner detector hits on tracks

Lol-VF Layout

Improved pT Resolution

Finer granularity in forward region improves resolution

