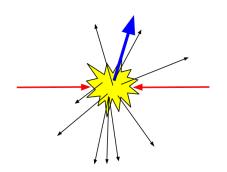
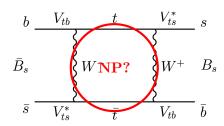

EXPERIMENTAL PROSPECTS FOR STUDIES OF CP VIOLATION IN THE BEAUTY AND CHARM SYSTEMS

Thanks to V. Vagnoni, T. Gershon,
A. Cerri, P. Reznicek, D. Price,
F. Palla, K-F. Chen, N. Viegas,

@GreigCowan (Edinburgh)
On behalf of ATLAS, CMS, LHCb
May 13th 2015


- Why CP violation?
- Luminosity prospects
- CP violation in the beauty system $(\phi_s, \gamma, a_{\rm sl})$
- CP violation in the charm system $(|q/p|, A_{\Gamma})$

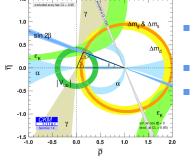
SEARCHING FOR NEW PHYSICS


DIRECT

Cannot produce particles with $mc^2 > E$

INDIRECT

Higher energy particles can appear virtually in quantum loops \rightarrow flavour physics

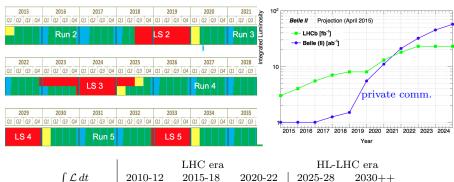


History: top quark mass predicted by quark mixing

CP VIOLATION IN THE STANDARD MODEL

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} \, V_{\rm us} \, V_{\rm ub} \\ V_{\rm cd} \, V_{\rm cs} \, V_{\rm cb} \\ V_{\rm td} \, V_{\rm ts} \, V_{\rm tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\bar{\rho} - i\bar{\eta}) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Wolfenstein parameterisation



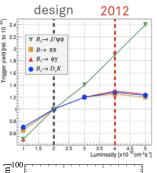
- 3 generations + 1 phase $\rightarrow \bar{\eta} \neq 0$ is only source of CP violation in SM.
- CKM picture confirmed up to $\sim 20\%$.
- Couplings show strong hierarchy not seen in lepton sector

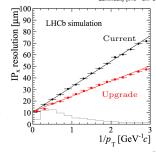
 ⇒ "SM flavour puzzle"

- New Physics should have flavour structure similar to SM...
- ... or the NP scale is very very large ($\sim 100 \text{TeV}$) \Rightarrow "NP flavour puzzle"
- Need more **precision measurements** to look for small deviations.

Projected luminosity

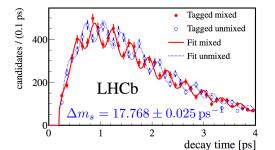
$\int \mathcal{L} u \iota$	2010-12	2010-10	2020-22	2020-20	2030TT
v	(Run-1)	(Run-2)	(Run-3)	(Run-4)	(Run-5)
ATLAS, CMS	$25 {\rm fb}^{-1}$	$100 {\rm fb}^{-1}$	$300{\rm fb^{-1}}$	\rightarrow	$3000{\rm fb^{-1}}$
LHCb	$3 {\rm fb}^{-1}$	$8\mathrm{fb^{-1}}$	$23 {\rm fb}^{-1}$	$46 {\rm fb}^{-1}$	$100 {\rm fb}^{-1}$

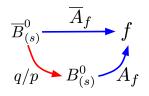

- $\sigma(b\bar{b}) \sim \text{doubles from } 7 \to 14 \,\text{TeV}.$
- LHCb will be upgraded after Run-2.
- ATLAS, CMS phase-2 upgrades after Run-3.
- Belle-II starts to make an impact $\sim 2018-19$.
 - Important competition /complementarity with LHC(b).


LHCB UPGRADE (INSTALLED AFTER RUN-2)

- Aim: significant increase in event statistics.
- Increase \mathcal{L} to 2×10^{33} cm⁻²s⁻¹.
- \blacksquare Improve detector readout from 1MHz \to 40MHz. Use full software trigger.
- Will have big impact for hadronic decays (e.g., 10× charm).

- Framework TDR, CERN-LHCC-2012-007
- Approved upgrade TDRs for VELO, RICH, Tracker, Trigger (computing to come).

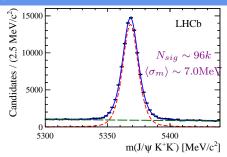


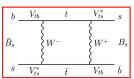

CP VIOLATION + MESON MIXING

- 2 Mixing: $|q/p| \neq 1$
- Interference between mixing and decay:

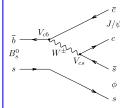
$$\phi \equiv \arg(\lambda_f) \equiv \arg\left(\frac{q}{p}\frac{A_f}{\overline{A}_f}\right) \neq 0$$

$$|M_{\rm L,H}\rangle = p|M^0\rangle \pm q|\overline{M}^0\rangle$$




Mixing observables:

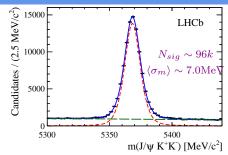
$$\begin{split} \Delta m &\equiv (m_H - m_L) \\ \Gamma &\equiv (\Gamma_L + \Gamma_H)/2 \\ \Delta \Gamma &\equiv \Gamma_L - \Gamma_H \end{split}$$

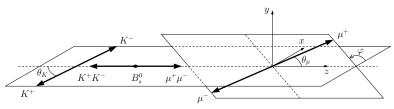

Measuring ϕ_s using $B_s^0 \to J/\psi \phi$

- $J/\psi \rightarrow \mu^+\mu^-, \ \phi \rightarrow K^+K^-$
- Time-dependent tagged analyses.
- $B_s^0 \to J/\psi \, \phi, \, B^0 \to J/\psi \, \pi^+ \pi^-$ are $P \to VV$ decays so use angular information to disentangle CP-odd and CP-even components.
- Measure $\phi_s, \Delta m_s, \Gamma_s, \Delta \Gamma_s, |\lambda_f| \dots$ [this makes $B_s^0 \to J/\psi \phi$ special]

$$\phi_{mix} = 2 \arg(V_{tb} V_{ts}^*)$$

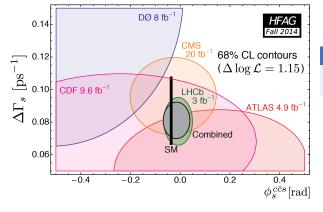
$$\phi_s \overset{\text{SM}}{=} -2 \arg \left(-\frac{V_{cb} V_{cs}^*}{V_{tb} V_{ts}^*} \right) \equiv -2\beta_s$$


$$\phi_s \overset{\text{SM}}{=} -0.0365 \pm 0.0012 \operatorname{rad}$$
[CKMFitter]


(†) Assuming we ignore sub-leading penguin contributions - more later

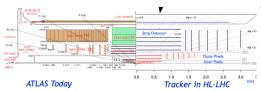
$$\phi_{dec} = \arg(V_{cb}V_{cs}^*)$$

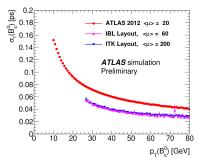
Measuring ϕ_s using $B_s^0 \to J/\psi \phi$

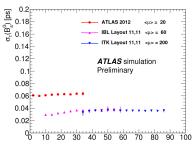

- $J/\psi \rightarrow \mu^+\mu^-, \ \phi \rightarrow K^+K^-$
- Time-dependent tagged analyses.
- $B_s^0 \to J/\psi \, \phi, \, B^0 \to J/\psi \, \pi^+ \pi^-$ are $P \to VV$ decays so use angular information to disentangle CP-odd and CP-even components.
- Measure $\phi_s, \Delta m_s, \Gamma_s, \Delta \Gamma_s, |\lambda_f| \dots$ [this makes $B_s^0 \to J/\psi \phi$ special]

Exp	$N_{ m sig}$	$\langle \sigma_t \rangle$ [fs]	Tagging power
LHCb (3		$\sim 43 \Rightarrow \mathcal{D} \sim 73\%$	$\sim 3.0\%$
CMS (20	fb^{-1}) 49k	$\sim 70 \Rightarrow \mathcal{D} \sim 46\%$	$\sim 1.0\%$
ATLAS (4.9fb^{-1}) 22k	$\sim 100 \Rightarrow \mathcal{D} \sim 21\%$	$\sim 1.5\%$

$\Delta\Gamma_s - \phi_s$ Global Combination

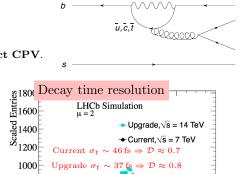

Combination

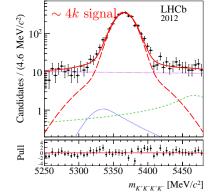

 $\phi_s = -0.015 \pm 0.035 \text{rad}$ $\Delta \Gamma_s = 0.081 \pm 0.006 \, \text{ps}^{-1}$

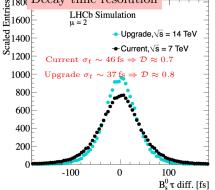

- New physics not a large effect
- \Rightarrow need to control SM effects (penguins).

Mode	$\sigma(\phi_s)[\mathrm{rad}]$	Ref.	Exp
$B_s^0 \rightarrow J/\psi \phi$	$-0.058 \pm 0.049 \pm 0.006$	PRL 114 (2015) 041801	LHCb (3fb^{-1})
$B_s^0 \rightarrow J/\psi \phi$	$-0.030 \pm 0.110 \pm 0.030$	CMS-PAC-BPH-13-012	CMS (20fb^{-1})
$B_s^0 \rightarrow J/\psi \phi$	$+0.120 \pm 0.250 \pm 0.050$	PRD 90 (2014) 052007	$ATLAS (4.9 fb^{-1})$
$B_s^0 \rightarrow J/\psi \pi^+\pi^-$	$+0.070 \pm 0.068 \pm 0.008$	PLB 736 (2014)	LHCb (3fb^{-1})
$\begin{array}{c} B^0 \rightarrow J/\psi \phi \\ B^0_\delta \rightarrow J/\psi \phi \\ B^0_\delta \rightarrow J/\psi \phi \\ B^0_\delta \rightarrow J/\psi \pi^+ \pi^- \\ B^0_s \rightarrow D^+_s D^s \end{array}$	$+0.020 \pm 0.170 \pm 0.020$	PRL 113, (2014) 211801	$LHCb (3 fb^{-1})$

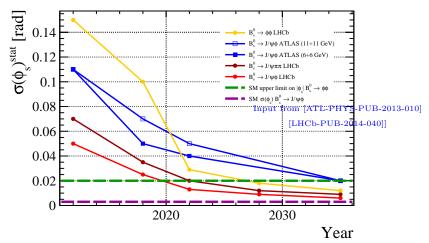
- $\sigma(\phi_s)$ dependent on N_{sig} , σ_t , flavour tagging.
- Upgraded inner detector (IBL in Run-2, ITK for HL-LHC) improves decay time resolution by 30% w.r.t. Run-1.
- Higher p_T improves σ_t and signal purity (but lower lower efficiency).
- Small (14%) increase in σ_t in Run-2 as a function of nPV, but stable > 40.



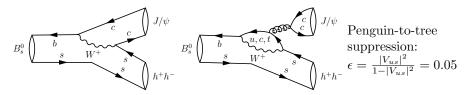



$C\!P$ violation in charmless B^0_s decays [prd 90 (2014) 052011]

- $B_s^0 \to \phi \phi$: $b \to s$ penguin decays sensitive to NP in the loops.
- $\phi \to KK$: 5 different polarisation amplitudes \Rightarrow angular analysis.
- $\phi_s = -0.17 \pm 0.15 \pm 0.03 \text{ rad.}$
- $|\lambda| = 1.04 \pm 0.07 \pm 0.03 \Rightarrow$ no direct CPV.



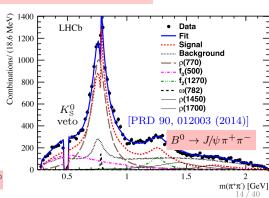
SM: $|\phi_s| < 0.02 \,\mathrm{rad}$



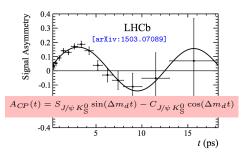
Prospects for ϕ_s at HL-LHC

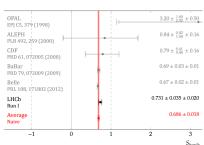
- ATLAS sensitivities using toy-MC using 2011 analysis with fully simulated signal.
 Background from 2012 data sidebands.
- Strong dependence on $\sigma(\phi_s)$ on muon p_T thresholds in ATLAS trigger:
 - Run-2/3: 6+6 GeV (nominal, assuming basic L1-topo usage) or 11+11 GeV (pessimistic ⇒ ×7 fewer events)
 - HL-LHC: 11+11 GeV

Controlling penguin pollution in ϕ_q

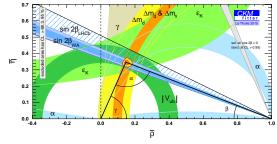


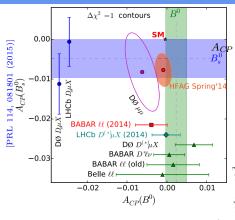
$$\phi_q^{\text{measured}} = \phi_q + \delta_{\text{Penguin}} + \delta_{\text{New Physics}}$$


- Difficult-to-calculate non-perturbative hadronic effects could lead to big enhancement.
- Measure δ_{Penguin} using decays where penguin/tree ratio is enhanced.


[Faller et al. arXiv:0810.4248, De Bruyn & Fleischer, arXiv:1412.6834]

- Use SU(3) relations to link B_s^0 and B^0 (broken at level of 20-30%).
- $|\delta_{\rm P}| < 1.8^{\circ}$ c.f. $\sigma(\phi_s) = \pm 2.0^{\circ}, \ \sigma(\phi_d) = \pm 1.4^{\circ}$

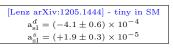

CP VIOLATION IN $B^0 \to J/\psi K_{\rm S}^0$

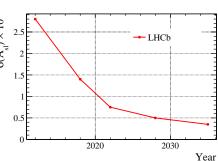


$$\begin{split} S_{J/\psi~K_{\mathrm{S}}^{0}} &\approx \sin 2\beta \\ S_{J/\psi~K_{\mathrm{S}}^{0}} &= +0.731 \pm 0.035 \pm 0.020 \\ C_{J/\psi~K_{\mathrm{S}}^{0}} &= -0.038 \pm 0.032 \pm 0.005 \end{split}$$

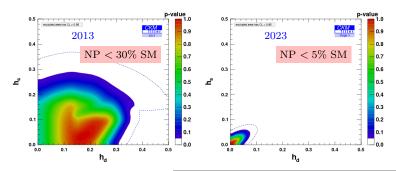
- Consistent with world average and similar precision to B-factories
- **HL-LHC**: expect $\sigma(S_{J/\psi K_S^0}) \sim 0.005$, similar from Belle-II.

CP violation in $B^0_{(s)}$ mixing $(|B^0_{\mathbf{L},\mathbf{H}}\rangle = p|B^0\rangle \pm q|\overline{B}^0\rangle)$

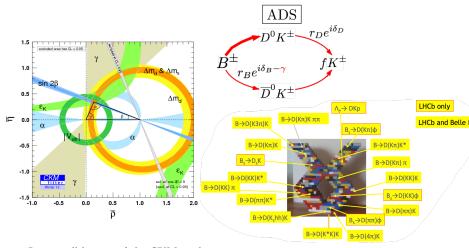



$$\begin{array}{l} a_{\rm sl}^s = [-0.06 \pm 0.50 \pm 0.36]\% \ ({\rm LHCb}, \ 1 \, {\rm fb^{-1}}) \\ a_{\rm sl}^d = [-0.02 \pm 0.19 \pm 0.30]\% \ ({\rm LHCb}, \ 3 \, {\rm fb^{-1}}) \end{array}$$

 $[{\rm PLB}\ 728\ (2014)\ 607,\ {\rm PRL}\ 114\ (2014)\ 041601]$

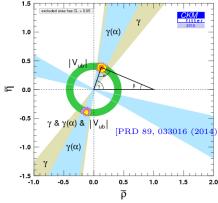

 $\sim 3\sigma$ tension with SM from D0 not confirmed or excluded by LHCb.

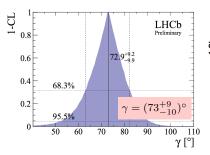
$$egin{align} egin{align} A_{CP} &= a_{
m sl} = rac{\Gamma(\overline{B}
ightarrow B
ightarrow f) - \Gamma(B
ightarrow \overline{B}
ightarrow \overline{f})}{\Gamma(\overline{B}
ightarrow B
ightarrow f) + \Gamma(B
ightarrow \overline{B}
ightarrow \overline{f})} \ &= rac{1 - |q/p|^4}{1 + |q/p|^4} \end{split}$$

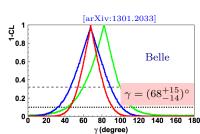

Assume that NP only enters B^0 and B_s^0 mixing: $M_{12}^{d,s} = (M_{12}^{d,s})_{SM}(1 + h_{d,s}e^{2i\sigma_{d,s}})$.

$$h \approx \frac{|C_{ij}|^2}{|V_{ti}^* V_{tj}|^2} \left(\frac{4.5 \, \text{TeV}}{\Lambda}\right)^2$$

Couplings		Scales (in TeV) probed b		
Coupings	order	B_d mixing	B_s mixing	
$\overline{ C_{ij} = V_{ti}V_{tj}^* }$	tree level	17	19	
(CKM-like)	one loop	1.4	1.5	
$ C_{ij} = 1$	tree level	2×10^3	5×10^2	
(no hierarchy)	one loop	2×10^2	40	

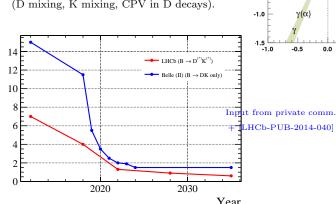

Tree-level measurement of γ

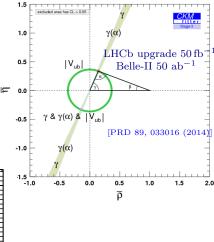



- Least well known of the CKM angles.
- Small theoretical uncertainty on the tree level diagrams no NP contributions
- Use interference between $B^{\pm} \to D^0 K^{\pm}$, $D^0 \to f$ decay amplitudes
- Time-independent $B^{\pm} \to D^0 K^{\pm}$ and $B^0 \to D K^*$
- ... or time-dependent $B_s^0 \to D_s^+ K (\gamma + \beta)$

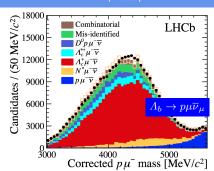
γ COMBINATION

- Best precision comes from combining many independent decay modes.
- Run-1 dataset: $\sigma(\gamma) \sim 7^{\circ}$.
- 2025: $\sigma_{\rm LHCb}(\gamma) \sim \sigma_{\rm Belle-II}(\gamma) < 1^{\circ}$. $\sigma_{\rm syst} < 1^{\circ}$.
- Theoretical uncertainties < 1° (D mixing, K mixing, CPV in D decays).

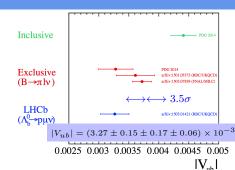


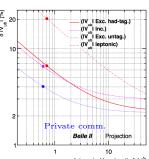


COMBINATION


 $\sigma(\gamma)$ [deg]

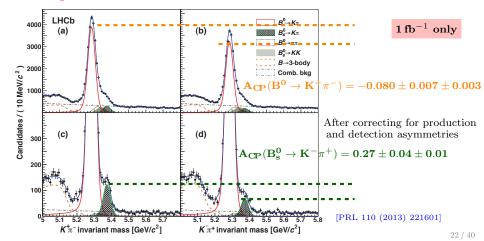
- Best precision comes from combining many independent decay modes.
- Run-1 dataset: $\sigma(\gamma) \sim 7^{\circ}$.
- 2025: $\sigma_{\text{LHCb}}(\gamma) \sim \sigma_{\text{Belle-II}}(\gamma) < 1^{\circ}$. $\sigma_{\rm syst} < 1^{\circ}$.
- Theoretical uncertainties < 1° (D mixing, K mixing, CPV in D decays).





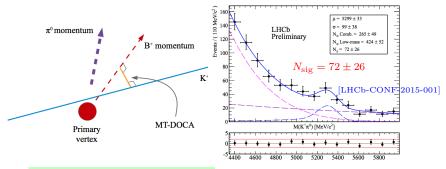
$\overline{\text{Exclusive}} |V_{ub}|$

- Syst. limited from Lattice QCD calc. of Λ_b form-factor (more precise at high q^2).
- $\Lambda_b \to p\mu\nu$ has different dependence on right-handed currents ($\epsilon_{\rm R}$), but combination starts to disfavour interpretation of RHC.
- Future: measurement using $B_s^0 \to K\mu\nu$ (difficult at Belle-II?)
- $\sigma(|V_{ub}|) \sim 2 3\%$ at Belle-II. Also improve normalisation mode $\mathcal{B}(\Lambda_c \to pK\pi)$.



Direct CP violation in $B_{(s)}^0$ meson decays

- Arises from interfering amplitudes with different weak and strong phases.
- $\blacksquare B^0$ mode more precise than and compatible with B-factories.
- $\blacksquare B_s^0$ mode: first observation!


$$A_{C\!P} = \frac{\Gamma(\overline{B}^0_{(s)} \to \overline{f}) - \Gamma(B^0_{(s)} \to f)}{\Gamma(\overline{B}^0_{(s)} \to \overline{f}) + \Gamma(B^0_{(s)} \to f)}$$

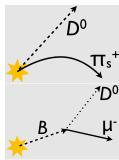
The " $K\pi$ puzzle"

$$\Delta A_{CP} \equiv A_{CP}(B^+ \to K^+ \pi^0) - A_{CP}(B^0 \to K^+ \pi^-) = 0.12 \pm 0.02$$

- Naively expect direct *CP* asym. to be the same. NP in electroweak penguin loop?
- Need isospin analysis to understand what is going on.
- $B^+ \to K^+ \pi^0$ challenging at LHCb (no secondary vertex + photons in final state).

- Improvements and future prospects:
 - Dedicated trigger (×3 5), increase in $\sigma(b\bar{b})$ (×2), offline analysis (×5).
 - $\Rightarrow \sim 1000$ events per fb⁻¹ ($\Rightarrow 10\%$ measurements, competitive with current B-factory samples).
 - Expect Belle-II to make significant improvements here (including $B^0 \to K^0 \pi^0$).

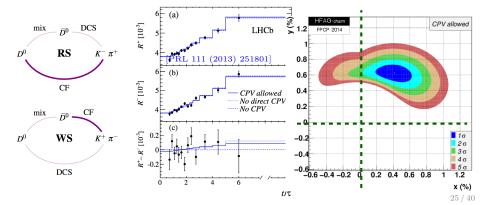
D^0 mixing and CP violation


$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$$

$$x \equiv \Delta m/\Gamma$$

$$x \equiv \Delta m/\Gamma$$
 $y \equiv \Delta \Gamma/(2\Gamma)$

- Mixing in charm sector is small $(|x|, |y| < \mathcal{O}(10^{-2}))$
- Direct *CP* violation when $A_{CP}^{\text{dir}} \equiv \frac{|A_f|^2 |\overline{A_f}|^2}{|A_f|^2 + |\overline{A_f}|^2} \neq 0$
- Indirect CP violation when $A_{CP}^{\text{mix}} \equiv |q/p|^2 1 \neq 0$, $\phi \equiv \arg(\frac{q}{p} \frac{A_f}{\overline{A}_f}) \neq 0, \pi$


- Huge charm samples at the LHC from different sources:
 - 1 Prompt charm
 - Semileptonic b-hadron decays

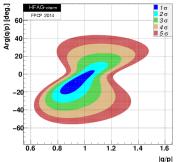
D^0 mixing and CP violation

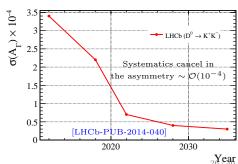
- \blacksquare Mixing in charm sector dominated by long distance effects \Rightarrow v. small CPV expected
- First > 5σ observation of charm mixing made by LHCb [PRL 110 (2013) 101802].
- right-sign: $D^{*+} \to D^0 \pi^+ \to (K^- \pi^+) \pi^+$ (Cabibbo favoured, mixing+DCS 54M events)
- wrong-sign: $D^{*+} \to D^0 \pi^+ \to (K^+ \pi^-) \pi^+$ (DCS, mixing+CF 0.23M events)

$$R(t) \equiv \frac{N_{\rm ws}(t)}{N_{\rm rs}(t)} \approx R_D + \sqrt{R_D} y' \frac{t}{\tau} + \frac{1}{4} (x'^2 + y'^2) (\frac{t}{\tau})^2$$

INDIRECT CP VIOLATION $(D^0 \to K^+K^-, D^0 \to \pi^+\pi^-)$

$$A_{\Gamma} \equiv \frac{\tau(\overline{D}^0 \to h^+ h^-) - \tau(D^0 \to h^+ h^-)}{\tau(\overline{D}^0 \to h^+ h^-) + \tau(D^0 \to h^+ h^-)} \approx (A_{CP}^{\text{mix}}/2 - A_{CP}^{\text{dir}})y \cos \phi - x \sin \phi$$


Distinguish CP violation in charm mixing from that in decay.


$$1 A_{\Gamma} \neq 0$$

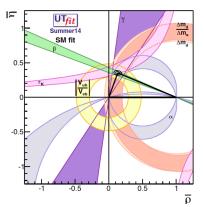
 \Rightarrow *CP* violation in mixing $(\mathcal{O}(10^{-4}) \text{ in SM})$

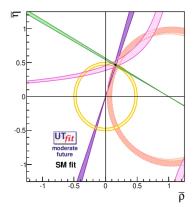
$$[A_{\Gamma}(K^+K^-) - A_{\Gamma}(\pi^+\pi^-)] \neq 0 \Rightarrow CP$$
 violation in decay


Tagging method	$A_{\Gamma}(K^{+}K^{-}) \times 10^{-3}$	$A_{\Gamma}(\pi^+\pi^-)\times 10^{-3}$	Ref.
Prompt D^* 's	$-0.35 \pm 0.62 \pm 0.12$	$+0.33 \pm 1.06 \pm 0.14$	$1\mathrm{fb^{-1}}$ [PRL 112 (2014) 04180
Semileptonic B's	$-1.34 \pm 0.77 \pm 0.30$	$-0.92 \pm 1.45 \pm 0.29$	$3\mathrm{fb}^{-1}$ [JHEP 04 (2015) 043]
T LIEVO			

FUTURE CHARM SENSITIVITIES

- Scale sensitivities with \sqrt{N} .
 - Assumes scaling of systematic uncertainties.
 - Ignores analysis improvements.
- LHCb-upgrade will improve hadronic $\varepsilon_{\text{trig}}$ by factor 2 (removal of E_{T} cuts and improvements in tracking efficiency).
- Will be able to probe SM-level CP violation.




		LHC era		HL-LI	HC era
$\int \mathcal{L} dt$	Run-1	Run-2	Run-3	Run-4	Run-5
v	(2010-12)	(2015-18)	(2020-22)	(2025-28)	(2030++)
$x [10^{-3}]$	1.22	0.92	0.42	0.25	0.18
$y [10^{-3}]$	0.53	0.37	0.15	0.09	0.06
$ q/p [10^{-3}]$	59	44	20	12	8
$\phi \text{ [mrad]}$	89	70	33	20	14
	3.4.	1 . 1	1		

Mixing and indirect *CP* violation sensitivities

SUMMARY

- Higher precision *CP* violation measurements probe TeV scales, beyond reach of direct measurements.
- Significant progress has been made, CKM holding strong.
- Detailed *CP* violation programme from LHCb, ATLAS, CMS covering HL-LHC era.
 - Many many more observables not discussed today.
 - Competition/complementarity with Belle-II from ~ 2018 .

SENSITIVITY PROSPECTS LHCb-PUB-2014-040

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B_s^0 \to J/\psi \phi) \text{ (rad)}$	0.049	0.025	0.009	~ 0.003
	$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (\text{rad})$	0.068	0.035	0.012	~ 0.01
	$A_{\rm sl}(B_s^0) \ (10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.018	0.02
penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.023	< 0.02
	$2\beta^{\mathrm{eff}}(B^0 \to \phi K_{\mathrm{S}}^0) \text{ (rad)}$	0.30	0.20	0.036	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$	0.20	0.13	0.025	< 0.01
currents	$ au^{ ext{eff}}(B_s^0 o \phi \gamma)/ au_{B_s^0}$	5%	3.2%	0.6%	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{ m GeV^2/}c^4)$	0.09	0.05	0.017	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$
Higgs	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0 o \mu^+\mu^-)/\mathcal{B}(B_s^0 o \mu^+\mu^-)$	220%	110%	40%	$\sim 5\%$
Unitarity	$\gamma(B \rightarrow D^{(*)}K^{(*)})$	7°	4°	0.9°	negligible
triangle	$\gamma(B^0_s o D_s^\mp K^\pm)$	17°	11°	2.0°	negligible
angles	$\beta(B^0 \to J/\psi K_S^0)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+K^-) \ (10^{-4})$	3.4	2.2	0.4	-
CP violation	$\Delta A_{CP} (10^{-3})$	0.8	0.5	0.1	_

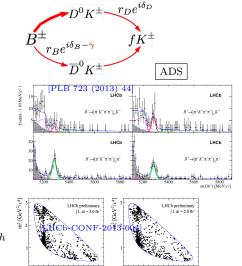
- Before upgrade.
- After upgrade.
- Current theory uncertainty.

- Relax assumption that $\lambda^f \equiv \eta_f \frac{q}{p} \frac{A_f}{\overline{A}_f}$ is same for all $J/\psi K^+K^-$ polarisation states.
 - Measure $\lambda^f = |\lambda^f| e^{-i\phi_s^f}, f \in (0, \perp, \parallel, \mathbf{S})$
- Penguin pollution and/or CPV could be different for each state, f [Bhattacharya, Datta, Int. J. Mod, Phys. A28(2013) 1350063].

$A_{ m S}$	Parameter	Value
A_0	$ \lambda^0 $	$1.012 \pm 0.058 \pm 0.013$
A_{\perp}	$ \lambda^{\parallel}/\lambda^{0} $	$1.02 \pm 0.12 \pm 0.05$
A_{\parallel} $J/\psi\phi + \text{S-war}$	$_{\rm re} \lambda^{\perp}/\lambda^0 $	$0.97 \pm 0.16 \pm 0.01$
B_s^0	$ \lambda^{ m S}/\lambda^0 $	$0.86 \pm 0.12 \pm 0.04$
/ " //	ϕ_s^0 [rad]	$-0.045 \pm 0.053 \pm 0.007$
ϕ_{mix}	$\phi_s^{\parallel} - \phi_s^0 \text{ [rad]}$	$-0.018 \pm 0.043 \pm 0.009$
B_s	$\phi_s^{\perp} - \phi_s^0 \text{ [rad]}$	$-0.014 \pm 0.035 \pm 0.006$
	$\phi_s^{\mathrm{S}} - \phi_s^0 \text{ [rad]}$	$0.015 \pm 0.061 \pm 0.021$

Everything compatible with no polarisation dependence.

Measurement of γ from $B \to DK$


1 GLW/ADS: f is CP eigenstate

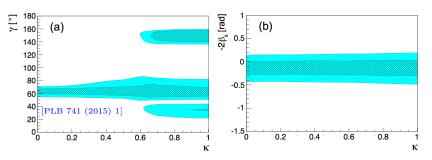
$$(D^0 \to K^+K^-, \pi^+\pi^-)$$

- Large rate, small interference.
- PLB 712 (2012) 203
- 2 ADS: f is common final state $(D^0 \to K^{\pm}\pi^{\mp}, K^{\pm}\pi^{\mp}\pi^{+}\pi^{-})$
 - Lower rate, larger interference.

 - PLB 723 (2013) 44
- 3 **GGSZ**: f is common final state $(D^0 \to K_s^0 K^+ K^-, K_s^0 \pi^+ \pi^-)$

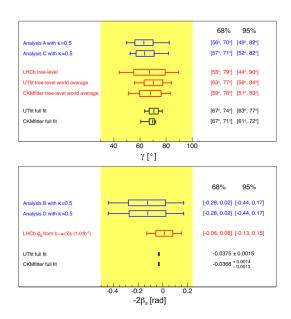
 - Requires Dalitz analysis. JHEP 10 (2014) 097
- 4 GLS: $f = K_S^0 K \pi$
 - PLB 733 (2014) 36
- 5 GLW/ADS: $B^0 \to DK^*, D \to hh$
 - PRD 90 (2014) 112002

Modes have different $b \to u$ and $b \to c$ amplitude ratios so different sensitivity to γ .

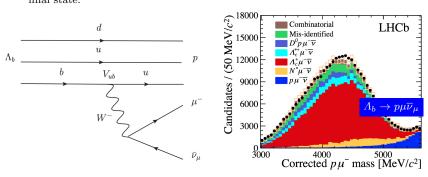

 $m_+^2 [GeV^2/c^4]$

m2 [GeV2/c4]

γ and ϕ_s from charmless 2-body decays


- Determine γ and ϕ_s using $B^0 \to \pi^+\pi^-$, $B^0 \to \pi^0\pi^0$, $B^0 \to \pi^\pm\pi^0$, $B^0 \to K^+K^-$ [PLB 459 (1999) 306, JHEP 10 (2012) 029]
- Use isospin and U-spin symmetries, accounting for non-factorisable U-spin breaking effects (κ).

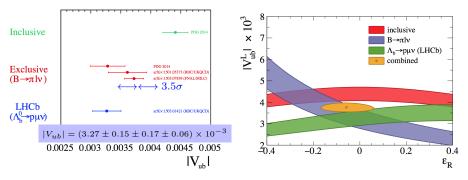
$$\gamma = (63.5^{+7.2}_{-6.7})^{\circ}$$
 OR $\phi_s = -0.12^{+0.12}_{-0.16}$ rad


- Consistent with tree-level measurement of γ and (separately) consistent with ϕ_s from $b \to c\bar{c}s$ (potentially competitive measurement).
- Needs to be updated with $3 \, \text{fb}^{-1}$.

γ and ϕ_s from charmless 2-body decays

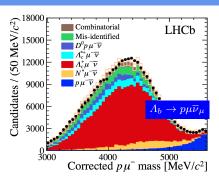
Exclusive $|V_{ub}|$

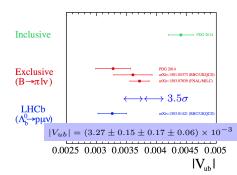
- Long-standing discrepancy between inclusive and exclusive determinations of $|V_{ub}|$.
- Large production of Λ_b baryons at LHC. Cleaner than $B \to \pi l \nu$ due to protons in final state.

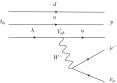


- First observation of $\Lambda_b \to p\mu\overline{\nu}_{\mu}!$
- Normalise to the V_{cb} decay, $\Lambda_b \to \Lambda_c \mu \nu$ and use world average $|V_{cb}|$ value.

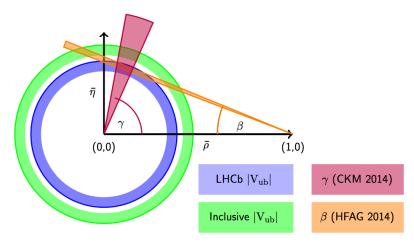
$$\frac{|V_{ub}|^2}{|V_{cb}|^2} = \frac{\mathcal{B}(\Lambda_b \to p\mu\nu)_{q^2 > 15\,\text{GeV}}}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu\nu)_{q^2 > 7\,\text{GeV}}} R_{\text{FF}}$$


Exclusive $|V_{ub}|$


- **Syst. limited** from Lattice QCD calc. of Λ_b form-factor (more precise at high q^2).
- $\Lambda_b \to p\mu\nu$ has different dependence on right-handed currents (ϵ_R), but combination starts to disfavour interpretation of RHC.
 - Is effect of RHC accounted for in experimental efficiencies for $B \to \pi l \nu$ and $B \to X_u l \nu$?.


- **Future:** can make other measurement using $B_s^0 \to K\mu\nu$ (difficult at Belle-II?)
- $\sigma(|V_{ub}|) \sim 2 3\%$ at Belle-II. Also improve $\mathcal{B}(\Lambda_c \to pK\pi)$ for normalisation mode $(\Lambda_b \to \Lambda_c \mu \nu)$.

Exclusive $|V_{ub}|$

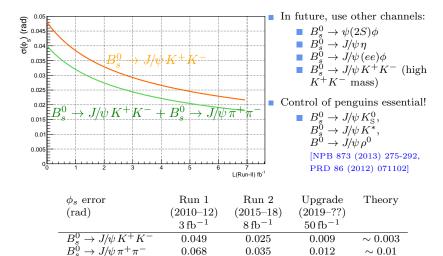


- Syst. limited from Lattice QCD calc. of Λ_b form-factor (more precise at high q^2).
- $\Lambda_b \to p\mu\nu$ has different dependence on right-handed currents (ϵ_R), but combination starts to disfavour interpretation of RHC.

- Future: can make other measurement using $B_s^0 \to K\mu\nu$ (difficult at Belle-II?)
- $\sigma(|V_{ub}|) \sim 2 3\%$ at Belle-II. Also improve $\mathcal{B}(\Lambda_c \to pK\pi)$ for normalisation mode $(\Lambda_b \to \Lambda_c \mu \nu)$.

Impact of $|V_{ub}|$ on unitarity triangle

■ LHCb $|V_{ub}|$ result consistent with world average value of $\sin 2\beta$.


ATLAS PROSPECTS FOR $B_s^0 \to J/\psi \phi$: TRIGGERS

- Muon p_T thresholds in trigger:
 - Run-2/3: 6+6 GeV (nominal, assuming basic L1-topo usage) or 11+11 GeV (pessimistic ⇒ ×7 fewer events)
 - HL-LHC: 11+11 GeV

	2011	2012	2015	-17	2019-21	2023-30+
Detector	current	current	IBL		IBL	ITK
Average interactions per BX $<\mu>$	6-12	21	60		60	200
Luminosity, fb ⁻¹	4.9	20			250	3 000
Di- μ trigger $p_{\rm T}$ thresholds, GeV	4 - 4(6)	4 - 6	6 - 6	11 - 11	11 - 11	11 - 11
Signal events per fb ⁻¹	4 400	4 320	3 280	460	460	330
Signal events	22 000	86 400	327 900	45 500	114 000	810 000
Total events in analysis	130 000	550 000	1 874 000	284 000	758 000	6 461 000
MC $\sigma(\phi_s)$ (stat.), rad	0.25	0.12	0.054	0.10	0.064	0.022

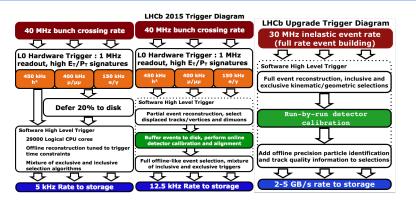
- Sensitivities using toy-MC using 2011 analysis with fully simulated signal and background from 2012 data sidebands.
- Expected developments should improve sensitivity further:
 - Flavour tagging and multi-dimensional fit from 8 TeV (2012) analysis.
 - L1-topo trigger \rightarrow some Run-2 data expected to be collected with triggers using lower p_T thresholds (4-6 GeV).

ϕ_s PROSPECTS

0.10

0.018

< 0.02


- Upgraded detector will be read out at 40MHz.
- Factor-10 increase signal yields.

 $B_s^0 \to \phi \phi$

Existing design will saturate at higher luminosities.

0.15

LHCB TRIGGER

