Theoretical considerations on Rare & Forbidden Higgs decays

Gino Isidori

[University of Zürich]

- ▶ Introduction
- ► Flavor-violating Higgs decays
- Decays into light exotic states
- ► Rare exclusive semi-hadronic decays
- Conclusions

Introduction

Despite all its successes, the SM is likely to be an *effective theory*, i.e. the limit -in the experimentally accessible range of <u>energies</u> and <u>effective couplings</u>-of a more fundamental theory, with new degrees of freedom

We need to search for New Physics with a broad spectrum perspective given the lack of clear indications on the SM-EFT boundaries (both in terms of energies and effective couplings)

Introduction

Despite all its successes, the SM is likely to be an *effective theory*, i.e. the limit -in the experimentally accessible range of <u>energies</u> and <u>effective couplings</u>- of a more fundamental theory, with new degrees of freedom

We need to search for New Physics with a broad spectrum perspective given the lack of clear indications on the SM-EFT boundaries (both in terms of energies and effective couplings)

"High-statistics" Higgs Physics

(exploration of the Higgs properties with minimum theoretical bias)

- Ad hoc sector of the SM, with several couplings not determined by symmetries
- First fundamental (?) scalar
- Natural "portal" toward possible "secluded sectors" with new particles/fields
- The vast majority of the allowed couplings of the Higgs are couplings to the SM fermions (still largely unexplored...) → large room for NP

. . . .

► Introduction

Some attempts in this direction have already started...

<u>Introduction</u>

Some attempts in this direction have already started...

...but the peculiar value of m_h (\rightarrow suppressed Higgs width) offers many more interesting tests.

Precision measurements

Rare decays

Introduction

Some attempts in this direction have already started...

...but the peculiar value of m_h (\rightarrow suppressed Higgs width) offers many more interesting tests.

Precision measurements

Rare decays

On the TH side:

- Unique window on models where (light) NP couples directly (*effective tree-level coupling*) only to the Higgs field (*Higgs portal*, ...)
- Large deviations from the SM less constrained by other observables (e.g. EWPO)

On the EXP side:

• Potential large room for improvement with increasing statistics vs. the (slow) improvement in measurements where we have already seen the SM signal...

<u>Introduction</u>

Some attempts in this direction have already started...

...but the peculiar value of m_h (\rightarrow suppressed Higgs width) offers many more interesting tests.

Introduction

Some attempts in this direction have already started...

...but the peculiar value of m_h (\rightarrow suppressed Higgs width) offers many more interesting tests.

If we consider the SM as a low-energy effective theory, it is natural to include possible flavor-violating couplings of the physical Higgs boson.

h-mediated FCNCs are unavoidable in models with more Higgs doublets and, more generally, can be viewed as the effect of higher-dimensional operators (in the EFT approach):

Azatov, Toharia, Zhu, 0906.1990
Agashe & Contino, 0906.1542

$$Y^{ij} \psi_L^i \psi_R^j \phi + \epsilon^{ij} \psi_L^i \psi_R^j \phi^3 + ...$$

$$\epsilon^{ij} = \frac{c^{ij}}{\Lambda^2}$$

$$(vY^{ij} + v^3 \epsilon^{ij}) \psi_L^i \psi_R^j + (Y^{ij} + 3v^2 \epsilon^{ij}) \psi_L^i \psi_R^j h + ...$$

$$VY_{eff} \qquad h \text{ FCNC couplings if } Y^{ij} \neq c \epsilon^{ij}$$

$$\mathcal{L}_{\text{eff}} = \sum_{i,j=d,s,b} c_{ij} \, \bar{d}_L^i d_R^j h + \sum_{i,j=u,c,t} c_{ij} \, \bar{u}_L^i u_R^j h + \sum_{i,j=e,\mu,\tau} c_{ij} \, \bar{\ell}_L^i \ell_R^j h + \text{H.c.}$$

(fermion mass-eigenstate basis)

Before looking at Higgs data, worth to explore the indirect bounds from the (*long list...*) of low-energy precision measurements:

$$\mathcal{L}_{\text{eff}} = \sum_{i,j=d,s,b} c_{ij} \, \bar{d}_L^i d_R^j h + \sum_{i,j=u,c,t} c_{ij} \, \bar{u}_L^i u_R^j h + \sum_{i,j=e,\mu,\tau} c_{ij} \, \bar{\ell}_L^i \ell_R^j h + \text{H.c.}$$

Before looking at Higgs data, worth to explore the indirect bounds from the (*long list...*) of low-energy precision measurements:

Severe bounds in the quark sector from $\Delta F=2$ processes

(except for terms involving the top)

Bounds less severe in the lepton sector for the τμ and τe modes only

Indirect bounds imply $B(h \rightarrow \tau \mu, \tau e) \lesssim 10\%$

Blankenburg, Ellis, GI, 1202.5704 Harnik, Kopp, Zupan, 1209.1397 Davidson, Verdier, 1211.1248

2.4σ excess over bkg in the h \rightarrow τμ search

Best-fit of the signal: B(h $\rightarrow \tau \mu$)=(0.84 $^{+0.39}_{-0.37}$)%

CMS-HIG-14-005

Model-dependent considerations assuming the CMS result is a positive signal:

• Not easy (but not impossible...) to accommodate in realistic Yukawa models

Dery, Efrati, Nir, Soreq, Susic, 1408.1371

• The effect must appear at the tree-level, otherwise too-large $\tau \rightarrow \mu \gamma => \underbrace{extended\ Higgs\ sector}$

Dorsner et al. 1502.07784

• Explicit model with L_{μ} - L_{τ} symmetry & connection to B-physics anomalies

Crivellin, D'Ambrosio, Heeck, 1503.03477, 1501.00993

$$B(h \to \tau \mu) = (0.84^{+0.39}_{-0.37})\%$$

Model-dependent considerations assuming the CMS result is a positive signal:

• Not easy (but not impossible...) to accommodate in realistic Yukawa models

Dery, Efrati, Nir, Soreq, Susic, 1408.1371

• The effect must appear at the tree-level, otherwise too-large $\tau \rightarrow \mu \gamma => \underbrace{extended\ Higgs\ sector}$

Dorsner et al. 1502.07784

• Explicit model with L_{μ} - L_{τ} symmetry & connection to B-physics anomalies

Crivellin, D'Ambrosio, Heeck, 1503.03477, 1501.00993

Main (long-term) messages:

- Bottom-up (data driven) field
- Worth to improve the precision on h → τμ, τe as much as possible (different model-building possibilities opens up at different BR levels)

Light exotic states in $h \rightarrow 4l$

Light states in $h \rightarrow 4l$ decays

ATLAS and CMS have reported results about the $h \rightarrow ZZ^*$ couplings

However, what has been observed in the experiments are the $h \rightarrow 4l$ decays ($l=e,\mu$). With suitable cuts is possible to isolate the $h \rightarrow Z+ll$ amplitude but, in general,

$$A(h \rightarrow Z + ll) \neq A(h \rightarrow ZZ^*)$$

$$(2m_l)^2 < q^2 < (m_h - m_V)^2$$

The "off-shellness" of the second lepton pair allows to probe a <u>richer dynamical</u> <u>structure:</u>

- We are far enough from the pole of the amplitude at $q^2 = m_Z^2$ (dominant pole within the SM)
- Measuring the q^2 dependence we could reveal new "distant poles" (\leftrightarrow contact interactions in EFT) or even new "light poles" (\leftrightarrow new light states coupled to h & fermions)

GI, Manohar, Trott, 1305.0663

Curtin *et al.* 1312.4992,
Falkowski, Vega-Morales, 1405.1095
R. Dermisek, Raval, Shin, 1406.7018
Y. Chen *et al.* 1503.0585
M. Gonzalez-Alonso *et al.* 1504.04018, ...

Light states in $h \rightarrow 4l$ decays

The $d\Gamma/dm_{34}$ spectrum ($m_{34} = \sqrt{q^2}$ = lightest invariant mass pair) is the most interesting distribution to identify possible <u>light-poles</u> \rightarrow *very precise SM distribution*, even at low m_{34} , including charmonium/bottomonium states:

Light states in $h \rightarrow 4l$ decays

The $d\Gamma/dm_{34}$ spectrum ($m_{34} = \sqrt{q^2}$ = lightest invariant mass pair) is the most interesting distribution to identify possible <u>light-poles</u> \rightarrow *very precise SM distribution*, even at low m_{34} , including charmonium/bottomonium states:

SM resonance effects are small & under good th. control \rightarrow we can probe NP...

- <u>Specific NP examples motivated by the</u> (g-2)_u <u>anomaly</u>

Since a long time the experimental determination of $a_{\mu} = (g-2)_{\mu}$ is <u>not</u> in good agreement with the SM prediction:

$$\Delta a_{\mu} \equiv a_{\mu}^{\text{exp}} - a_{\mu}^{\text{th}} = (2.9 \pm 0.9) \times 10^{-9}$$

The discrepancy is not extremely significant (~3σ), but has survived a long list of scrutinies...

- Specific NP examples motivated by the (g-2)_u anomaly

Since a long time the experimental determination of $a_{\mu} = (g-2)_{\mu}$ is <u>not</u> in good agreement with the SM prediction:

$$\Delta a_{\mu} \equiv a_{\mu}^{\text{exp}} - a_{\mu}^{\text{th}} = (2.9 \pm 0.9) \times 10^{-9}$$

The discrepancy is not extremely significant (~3σ), but has survived a long list of scrutinies...

Solving the $(g-2)_{\mu}$ anomaly in terms of NP, requires the introduction of some new (*light or heavy...*) states <u>coupled to muons</u>.

In all cases there is a <u>natural connection</u> between NP effects in $(g-2)_{\mu}$ and $h \rightarrow 4l$

- Specific NP examples motivated by the (g-2)_u anomaly

There is a <u>natural connection</u> between NP effects in $(g-2)_{\mu}$ and $h \rightarrow 4l$

 $O(10^{-4})$ correction with respect to BR(h $\rightarrow 2\mu\gamma$)_{SM} unmeasurable even in the HL phase of LHC

- <u>Specific NP examples motivated by the</u> (g-2)_u <u>anomaly</u>

There is a <u>natural connection</u> between NP effects in $(g-2)_{\mu}$ and $h \rightarrow 4l$

Tiny correction to $h \rightarrow 2\mu 21$

Possible "visible" non-standard peak in the $h \rightarrow 4\mu$ distribution

h X=S,V μ

Davoudials, Lee, Marciano, 1203.2947, 1304.4935 Curtin *et al.* 1312.4992, Gonzales-Alonso & GI, 1403.2648 - Specific NP examples motivated by the (g-2)_u anomaly

A "minimalistic & concrete" set-up [minimum set of free parameters]:

- One light SU(2)₁-singlet scalar field, φ
- One effective coupling $c_{\mu}/\Lambda \to \text{Two parameter model } (c_{\mu}/\Lambda \text{ and } m_{\phi})$:

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{kin}}(\phi) + \left(\frac{c_{\mu}}{\Lambda} \overline{\mu}_{L} \mu_{R} H \phi + \text{h.c.}\right)$$

This \mathcal{L}_{eff} can be generated, for instance, introducing an heavy vector-like μ -partner

• The ratio of the two free parameters is the fixed by $(g-2)_{\mu}$ anomaly:

$$\Delta a_{\mu} = \frac{|\mathbf{c}_{\mu}|^2}{96\pi^2} \frac{v^2}{\Lambda^2} \frac{m_{\mu}^2}{m_{\phi}^2} \approx 6.4 \times 10^{-9} \left| \frac{\mathbf{c}_{\mu}/\Lambda}{(1 \text{ TeV})^{-1}} \right|^2 \left| \frac{10 \text{ GeV}}{m_{\phi}} \right|^2$$

• For $m_{\phi} \gtrsim 1$ GeV the model is consistent with all known bounds.

- Specific NP examples motivated by the (g-2)_u anomaly

A "minimalistic & concrete" set-up [minimum set of free parameters]:

- One light SU(2)₁ -singlet scalar field, ϕ
- One effective coupling $c_{\mu}/\Lambda \to \text{Two parameter model } (c_{\mu}/\Lambda \text{ and } m_{\phi})$
- The ratio of the two free parameters is the fixed by $(g-2)_{\mu}$ anomaly

A potential huge effect!

Already ruled out by present data...

...unless BR ($\phi \rightarrow \mu\mu$) << 1 \rightarrow quite possible if there are additional (invisible) decay modes of ϕ (v's, DM states, etc...).

→ <u>Specific NP examples motivated by the</u> (g-2)_u <u>anomaly</u>

Going beyond this minimal set-up, we can state that

- if the h \rightarrow X+µµ on-shell decay is kinematically allowed
- if we fix the couplings of the X particle to have an impact on $(g-2)_{u}$

- Not difficult to satisfy all existing constraints, especially for $m_X \sim \text{few GeV}$
- Sizable <u>local</u> deviations in $h \rightarrow 4\mu$ naturally expected

N.B.: In models addressing $(g-2)_{\mu}$ X is narrow and short-lived (not necessarily true in general)

N.B.: The <u>light mass region</u> $(1 \text{ GeV} \leq m_X \leq 10 \text{ GeV})$ is particularly motivated from the theoretical point of view ("dark-Z" models...)

- <u>Specific NP examples motivated by the</u> (g-2)_u <u>anomaly</u>

In the minimal "dark-Z" models [new U(1) & pure kinetic mixing with U(1)_Y] the region relevant for (g-2)_u is already ruled-out.

But it is easy to construct less minimal models [e.g. charging muons & not electrons under the new U(1)] where the region probed in $h \rightarrow 4\mu$ is relevant for $(g-2)_{\mu}$

J. Shelton, talk at "Unlocking the Higgs Portal" (May, 2014)

Rare exclusive semi-hadronic Higgs decays

Rare $h \rightarrow VP$ decays, where P is a single hadron state (*pseudo-scalar* or *vector-meson*) and V=Z,W are a very interesting probe of the vacuum-structure of the theory

$$A^{\rm SM} \propto \frac{f_P}{{
m v}}$$

GI, Manohar, Trott, 1305.0663

- Amplitude proportional to the ratio of the two order parameters controlling the SU(2)_L breaking within the SM
- Pristine (unique) probe of the higgs-Goldstone-gauge coupling

Rare $h \rightarrow VP$ decays, where P is a single hadron state (*pseudo-scalar* or *vector-meson*) and V=Z,W are a very interesting probe of the vacuum-structure of the theory

• BRs calculable with high precision within the SM:

- Within SM, dominated by the tree-level amplitude $[D_{\mu}H^{+}D_{\mu}H]$, except when suppressed [e.g.: sizable contrib. from $h \to \gamma^{*}Z$ in $h \to \psi Z$]
- Possible sizable modification BSM, in presence of non standard couplings of h to fermion currents (V and A currents)

Rare $h \rightarrow VP$ decays, where P is a single hadron state (*pseudo-scalar* or *vector-meson*) and V=Z,W are a very interesting probe of the vacuum-structure of the theory

BRs calculable with high precision within the SM:

$$\begin{array}{c} B(h \to Z \ \Upsilon)_{SM} = 1.6 \times 10^{-5} \\ B(h \to Z \ \eta_c)_{SM} = 1.4 \times 10^{-5} \\ B(h \to Z \ \psi \)_{SM} = 3.2 \times 10^{-6} \\ B(h \to W^- \ D_s)_{SM} = 2.1 \times 10^{-5} \\ B(h \to W^- \ \rho \)_{SM} = 0.8 \times 10^{-5} \\ B(h \to W^- \ \pi \)_{SM} = 0.6 \times 10^{-5} \\ B(h \to W^- \ \pi \)_{SM} = 0.6 \times 10^{-5} \\ \end{array}$$

- Within SM, dominated by the tree-level amplitude $[D_{\mu}H^{+}D_{\mu}H]$, except when suppressed [e.g.: sizable contrib. from $h \to \gamma^{*}Z$ in $h \to \psi Z$]
- Possible sizable modification BSM, in presence of non standard couplings of h to fermion currents (V and A currents)

Radiative modes of the type $h \rightarrow \gamma Y$ where Y is a quarkonium state have similar/complementary properties:

• SM calculation more involved due to non-negligible contribution from hqq (Yukawa) couplings, but still under good th. Control

Bodwin, Petriello, Sonyev, Velasco,1306.5770 Kagan *et al.* 1406.1722

• Destructive interference between $h \to \gamma + (Z,\gamma)^*$ and Yukawa contributions \to potential sensitive probe of modified Yukawa couplings

$$B(h \rightarrow \gamma \psi)_{SM} = (2.5 \pm 0.3) \times 10^{-6} \qquad B(h \rightarrow \gamma \Upsilon)_{SM} \sim 10^{-8}$$
 (maximal destr. interf. \rightarrow good SM null test!)

Radiative modes of the type $h \rightarrow \gamma Y$ where Y is a quarkonium state have similar/complementary properties:

• SM calculation more involved due to non-negligible contribution from hqq (Yukawa) couplings, but still under good th. Control

Bodwin, Petriello, Sonyev, Velasco, 1306.5770 Kagan *et al.* 1406.1722

• Destructive interference between $h \to \gamma + (Z,\gamma)^*$ and Yukawa contributions \to potential sensitive probe of modified Yukawa couplings

$$B(h \rightarrow \gamma \ \psi)_{SM} = (2.5 \pm 0.3) \times 10^{-6} \qquad B(h \rightarrow \gamma \ \Upsilon)_{SM} \sim 10^{-8}$$
 (maximal destr. interf. \rightarrow good SM null test!)

Caveat: BSM effects may not come only from modified Yukawas (e.g. modified coupl. to fermion currents, $h \rightarrow \gamma\gamma$, ...)

Beside these modes, for which we may hope to reach the SM signal, there is a long list of forbidden or more suppressed modes that would provide useful bounds on possible exotic couplings of the Higgs to fermion currents.

Worth to search for all the two-body modes of the type $h \to \{Z_{\text{leptonic}}, W_{\text{leptonic}}, \gamma\} + Mesons$

- Good templates for (even more) exotic searches
- → Part of a more extensive program of "exclusive hadronic tags" for the e.w. gauge boson in view of the HL-LHC program [Mangano & Melia, 1410.7475; Grossman, König, Neubert, 1501.06569]

<u>Conclusions</u>

We need to search for New Physics

[with a broad spectrum perspective given the lack of NP signal so far...]

Exploration of the Higgs properties with "minimal theoretical bias"...

Rare Higgs decays

[those discussed in this talk + many more...]
provide a unique opportunity in this respect:
unexplored windows toward a large class of NP models

VP mode	$\mathcal{B}^{ ext{SM}}$	VP^* mode	$\mathcal{B}^{ ext{SM}}$
$W^-\pi^+$	0.6×10^{-5}	$W^-\rho^+$	0.8×10^{-5}
W^-K^+	0.4×10^{-6}	$Z^0\phi$	2.2×10^{-6}
$Z^0\pi^0$	0.3×10^{-5}	$Z^0 ho^0$	1.2×10^{-6}
$W^-D_s^+$	2.1×10^{-5}	$W^-D_s^{*+}$	3.5×10^{-5}
W^-D^+	0.7×10^{-6}	W^-D^{*+}	1.2×10^{-6}
$Z^0\eta_c$	1.4×10^{-5}	o# 1	

GI, Manohar, Trott, 1305.0663

Resonance	$\mathcal{B}(h \to ZV)$
$J/\Psi(1S)$	3.2×10^{-6}
$\Psi(2S)$	1.5×10^{-6}
$\Upsilon(1S)$	1.7×10^{-5}
$\Upsilon(2S)$	8.9×10^{-6}
$\Upsilon(3S)$	6.7×10^{-6}

$$\begin{split} \frac{\text{BR}_{h \to \phi \gamma}}{\text{BR}_{h \to b\bar{b}}} &= \frac{\kappa_{\gamma} \left[\left(3.0 \pm 0.13 \right) \kappa_{\gamma} - 0.78 \bar{\kappa}_{s} \right] \cdot 10^{-6}}{0.57 \bar{\kappa}_{b}^{2}}, \\ \frac{\text{BR}_{h \to \rho \gamma}}{\text{BR}_{h \to b\bar{b}}} &= \frac{\kappa_{\gamma} \left[\left(1.9 \pm 0.15 \right) \kappa_{\gamma} - 0.24 \bar{\kappa}_{u} - 0.12 \bar{\kappa}_{d} \right] \cdot 10^{-5}}{0.57 \bar{\kappa}_{b}^{2}} \\ \frac{\text{BR}_{h \to \omega \gamma}}{\text{BR}_{h \to b\bar{b}}} &= \frac{\kappa_{\gamma} \left[\left(1.6 \pm 0.17 \right) \kappa_{\gamma} - 0.59 \bar{\kappa}_{u} - 0.29 \bar{\kappa}_{d} \right] \cdot 10^{-6}}{0.57 \bar{\kappa}_{b}^{2}} \end{split}$$