

Pile up Mitigation in ATLAS and CMS

Richard Polifka University of Toronto

LPCC HL-LHC Workshop 11.5.2015 CERN

Outline

- What is pile up
- ATLAS and CMS
- jet reconstruction
 - ATLAS
 - CMS
- How to beat pile up
 - basic
 - complex
- HL-LHC environment

warning - talk is targeting pile up suppression in light jets

Sources for this talk

ATLAS:

- https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetEtmissApproved2013HighMuPileup
- https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetEtmissApproved2013HighMuEtmiss
- http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2013-004/
- https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LargeEtaECFA2014
- http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-018/
- http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-085/
- http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-083/

CMS:

- https://cds.cern.ch/record/1751454?ln=en
- https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsFP/ECFA-CMSPublicResults.pdf
- https://cds.cern.ch/record/1247373/files/PFT-10-001-pas.pdf

Pile up definition

- in the quest for more luminosity, LHC is delivering collisions with more than one interaction per bunch crossing (BC)
- in each event the vertex with max Σp_T^2 usually defines the primary vertex
- origins of pile-up jets (PU, general name for any additional activity coming from non-PV vertices):
 - in-time ... IT ... real (typically) QCD di-jet events emerging from non-primary vertex
 - out-of-time ... OOT ... energy deposit in calorimeters which
 is coming from other BC due to long readout time
 - stochastic ... random energy fluctuations combined by cluster algorithm

Pile up situation

- M ... Average Number of Interactions per BC
 - sensitive to IT and OOT PU
- NPV ... number of primary vertex "candidates"
 - only in one event -> sensitivity only to IT PU
- pile up through the years
 - \bullet 2011 $\langle \mu \rangle = 9.1$
 - \bullet 2012 $\langle \mu \rangle = 20.7$

ATLAS and CMS

LAr hadronic end-cap (HEC)

LAr electromagnetic end-cap (EMEC)

LAr electromagnetic barrel

LAr forward (FCal)

- ATLAS
- ID: Pixel, Silicon and TRT
- Calo: EM (all) LAr+Pb
 - Had: Tile Fe+scint (plastic)
 - EC+FCAL LAr+Cu/ Tungsten

- CMS
- ID:Silicon
- Calorimeter:
 - ECAL crystals+scint (PbWO4)
 - HCAL brass+scint (plastic)

Pile up Sensitivity

ATLAS:

- large pile up sensitivity for objects which are reconstructed in the calorimeter only (jets, photons, hadronic taus)
 - tracker information used subsequently for pile up mitigation

CMS:

- idea of particle flow combines measured objects (clusters and tracks) to the level of stable particles
 - cluster-level pu mitigation as part of the particle flow algorithm, subsequent usage of vertex association

from constituents to jets

- clusters -> jets -> jet energy calibration
- particle flow

clusters

- topological clustering
 - based on nearest neighbor algorithm that clusters calo cells with energy above threshold with scheme $|E_{cell}|/\sigma_{noise}>4$ (seed) -> 2 (neighbors) -> 0 (additional layer)
 - $\sigma^2_{\text{noise}} = \sigma^2_{\text{electronic}} + \sigma^2_{\text{pile-up}}$
 - \bullet cell by cell, granularity and μ -dependent

jet energy calibration

- jets AntiKt4, 6
- idea of jet real energy sitting on a "pedestal" caused by pile-up
 - is ~uniform in central region and can be subtracted
 - $p_T^{corr} = p_T^{jet} \rho^* A^{jet}$
 - ullet calculated event by event as median of distribution of density of many jets constructed with no p_T threshold

at HL-LHC, pt of 25 GeV (on average) will be subtracted

jet energy calibration

- after MC JES (E_{true}/E_{reco}), residual correction based on μ and NPV removes all PU sensitivity of JES
- validated with data track jet (jets formed from tracks only) analysis on Z->ll events
 - final ~5% dependence goes to JES systematics

stable vs μ and NPV

particle flow

- track-cluster linking
- particle 4-vector reconstruction
- calorimeters cleaned for noise

particle flow

- very good data-MC description of link variables
- \bullet even π^0 peak reconstructed in ECAL
- seeding of clusters:
 - EndCaps p_T dependent
 - rest p_T in-dependent

response within 1.5%

jets

- charged hadrons final calibration based on matching between tracks and clusters
- neutral hadrons calibration taken from simulation once charged hadron calibration is validated
- jets: AntiKt R=0.3, 0.5 on particles from particle flow
 - charged hadrons corrected for zero-suppression and non-linearity of calorimeters (higher in forward region)
 - all available particles added to jet in the first step

vertex association

- JVF -> JVT
- CHS

PU Mitigation - tracking confirmation

- some PU jets remain even after subtraction techniques, mainly genuine non-PV QCD dijets
 - -> usage of tracking and vertex association
 - Jet Vertex Fraction (JVF) in Run1

$$\text{JVF}(\text{jet}_i, \text{PV}_j) = \frac{\sum_k p_{\text{T}}(\text{track}_k^{\text{jet}_i}, \text{PV}_j)}{\sum_n \sum_l p_{\text{T}}(\text{track}_l^{\text{jet}_i}, \text{PV}_n)}$$

PU dependent by construction - denominator increases with NPV

PU Mitigation - corrJVF & RpT

- NPV independent variables studied:
 - corrJVF and charged fraction (RpT)

$$\operatorname{corrJVF} = \frac{\sum_{k} p_{\mathrm{T}}^{\operatorname{trk}_{k}}(\mathrm{PV}_{0})}{\sum_{l} p_{\mathrm{T}}^{\operatorname{trk}_{l}}(\mathrm{PV}_{0}) + \frac{\sum_{n \geq 1} \sum_{l} p_{\mathrm{T}}^{\operatorname{trk}_{l}}(\mathrm{PV}_{n})}{(k \cdot n_{\operatorname{trk}}^{\mathrm{PU}})}}$$

$$R_{\rm pT} = \frac{\sum_{k} p_{\rm T}^{\rm trk_k}({\rm PV_0})}{p_{\rm T}^{jet}}$$

non-PV dependence cancels, results k-independent

only with respect to primary vertex

PU Mitigation - JVT

corrJVF and RpT form a 2D likelihood based on a kNN algorithm

Charged Hadron Subtraction (CHS)

- removal of charged hadrons from the particle collection which is input for the jet algorithm
 - based on track-vertex association within $|\eta| < 2.5$
 - performance of PF only and CHS+PF compared
 - tracks not associated to any vertex are kept

hard scattermatching (j-γ)

-> unmatched = "pile up"

PU rate down by factor of ~3

complex algorithms

- cleansing
- pruning, trimming, soft drop -> constituent subtraction, linear cleansing and PUPPI

PU Mitigation - grooming

- algorithmic removal of substructures within a jet based on kinematic criteria
- mainly used for boosted analyses using "fat jets" (CA algo with R > 1.0)
- calo-based trimming and filtering successful so far combine with tracking -> cleansing

no subjet p_T cut shall be more efficient in high PU environment

PU Mitigation - grooming

- removal of a subset of jet constituents
- to reduce jet mass dependence on PU for large jets (R > 0.8)
- alters the jet shape
- pruning: at each step, the softer from any particle pair is rejected if its momentum fraction (and distance) from the other is too small (large)
- trimming: removes particles below a dynamical p_T threshold
- \bullet soft drop/modified mass drop tagger: declustering of a jet, dropping sub-jets based on fractional p_T and size
- ullet groomed jets are corrected through "safe subtraction" subtract pile up p_T density

grooming performance

 algorithms using CHS subtraction have ~same resolution and better than without and are more stable wrt PU

PU Mitigation - complex techniques

- constituent subtraction: pile up subtraction from individual particles, inputs are jets and ρ
- linear cleansing: combined tracks and shapes
 - at subjet level, fraction of PV and non-PV tracks decide about removing the subjet
- ullet pileup per particle identification (PUPPI): works on particles before jet clustering, particle-weight is calculated from p_T , shapes to label each as "PU-like" / "HS like"
 - extended to forward region (without tracking)

complex techniques - performance

Anti-kT (R=0.8)

200 GeV < p. < 600 GeV

 $< n_{PU} > = 40$

30

20

10

CMS Simulation Proliminary

- nice resolution improvement through PUPPI
 - PU stability
- good data/MC

HL-LHC Projections

- jet response, vtx association (central +forward), grooming
- jet response, PF, CHS, PUPPI and timing

HL-LHC - ATLAS

- currently post Run3 300fb^{-1} , $\langle \mu \rangle = 80$ and HL-LHC 3ab^{-1} , $\langle \mu \rangle = 140 200$
- Three Scoping scenarios for upgrade work in progress
- dramatic worsening of jet p_T resolution with PU
- hope for straightforward application of current methods -> ρ-Area subtraction seems to restore stability
- for PU mitigation, tracking extension is considered up to 4.0

Tracking Confirmation 2

 R_{pT} restores NPV independence, but PU rejection efficiency degrades with $\langle \mu \rangle$

grooming

jet mass is increasingly washed out with pile up

grooming and pile up corrections restore the mass distribution

HL-LHC - CMS

- Phase I, $\langle \mu \rangle = 50$, no aging
 - post Run3
- Phase I, $\langle \mu \rangle = 140$, aging except for pixel, $1ab^{-1}$
 - demonstrates need for updates

- Phase II, $\langle \mu \rangle = 140$, aging except for pixel, $1ab^{-1}$
 - benchmark for Phase II performance
- main upgrade is in tracking extension up to $|\eta| < 4.0$

gain in stability
through jet
correction (p
subtraction,
detector
response,...)

HL-LHC - jet response

14 TeV

CMS Simulation Preliminary

→ PF 50PU

--- PF 140PU, aged

- CHS 140PU, aged

Puppi 140PU, agod

CHS 50PU

QCD MultiJets

0<| n |<1.3

- jet response for post Run3 is at best ~25% worse than Run1
- aged Phase2 detector shows 50-100% worsening
- in all cases, PUPPI performs

CMS Simulation Preliminary 50 ps ECAL resolution PU photons Charged pions (no PU) Photons (no PU) 10⁻³ 10⁻³ 10⁻³ 10⁻³ Time (ns)

HL-LHC - precision timing

- 50ps timing would hugely help to reject pile up
- even with a time cut, mass peak for the H->YY VBF signal does not correspond to m_H, but much still huge improvement visible

Summary

- pile up is the price to pay for high luminosity ... and it will get much worse
- ATLAS and CMS have slightly different approach to jet reconstruction, rich variety of pile up mitigation techniques is nevertheless based on similar ideas
 - subtracting pile up density from jets
 - usage of tracking CHS, JVT, grooming,
 - advanced combination cleansing and PUPPI
- already upcoming Run2 with higher CME and pile up conditions will allow for more careful validation and further development towards HL-LHC conditions

backup

<ρ>> vs <μ>>

groomers vs NPV

Figure 9: Pileup dependence versus n_{PV} of the mass resolution for QCD jets (left) and jets matched to generated W bosons (right) for various parameters of the grooming algorithms. For jets matched to W bosons, both the RMS and the σ from a Gaussian fit to the $(m_{reco} - m_{gen})$ distribution are reported.

Figure 8: Pileup dependence versus n_{PV} of the average jet mass for PF jets (left) and PF+CHS jets (right) for several grooming algorithms and parameters. The top row is trimmed jets, middle row is pruned jets and bottom row is jets with soft drop applied.

E_Tmiss

- is a vectorial sum of hard scatter objects (jets with PU suppression) biggest work on the residual "Soft Term" (for example using track association - STVF)
- for HL-LHC, soft term parametrizations used
- resolution worsens significantly

pile up suppression is under study