Experimental aspects of VBS studies

P. Govoni University and INFN of Milano-Bicocca

- account from radiation damage
- huge pile-up: 140 events on average
- maintain event reconstruction performances
- **trigger** in a high luminosity environment

ATLAS PHASE 2

- new pixel and strip tracker
- calorimeter
- trigger system

CMS PHASE 2

- new tracker
- extended muons coverage
- calorimetry electronics upgrade
- forward calorimeter upgrade

new physics

- SU(2)_L x U(1)_Y gauge-invariant, CP-even operators with dimension larger than 4 in the SM Lagrangian
- general EW Chiral Lagrangian anomalous terms (high mass resonances)
- simplified detector performance:
 - single physics objects response studied in detailed simulation with dedicated samples
 - parametrised efficiencies and resolutions used to smear the analysis samples
- several final states considered:

$WW \rightarrow \ell \nu \ell \nu$	a 4
WW → ℓνjj	<i>a</i> 4, <i>a</i> 5
$ZZ \rightarrow 4\ell$	$c_{\phi}W$
	f _{S0}
$WZ \rightarrow \ell \nu \ell \ell$	f _{T1}

physics objects

- leptons: $p_T > 25 \text{ GeV}$, $|\eta| < 2.5$
- jets: $p_T > 50 \text{ GeV}$, $|\eta| < 4.9$
- tag jets: two largest p_T ones

- ttbar production
- di-boson production
- lepton fakes negligible
- DY absent in this case

- one e and one μ with opposite charge
- MET > 50 GeV
- at least two jets

- ttbar production
- di-boson production
- W + jets not significant

selections

- one lepton $p_T > 60 \text{ GeV}$
- MET > 25 GeV
- $W_{\ell v} p_T > 200 \text{ GeV}$
- 1 fat jet with pT > 300 GeV and M_J ∈ (60, 100) GeV
- $M_{\text{(tag jet)}} > 250 \text{ GeV}$, $\Delta \eta_{\text{(tag jet)}} > 5$
- top mass resonances vetoed

model	SM	500 GeV scalar	800 GeV vector	1150 GeV vector
(a_4, a_5)	(0,0)	(0.01, 0.009)	(0.009, -0.007)	(0.004, -0.004)
S/B	$(3.3 \pm 0.3)\%$	$(0.7 \pm 0.1)\%$	$(4.9 \pm 0.3)\%$	$(5.8 \pm 0.3)\%$
$S/\sqrt{B} \ (L=300 \text{fb}^{-1})$	2.3 ± 0.3	0.6 ± 0.1	3.3 ± 0.4	3.9 ± 0.4
$S/\sqrt{B} \ (L = 3000 \text{fb}^{-1})$	7.2 ± 0.1	1.6 ± 0.1	10.4 ± 0.7	12.4 ± 0.7

sensitivity to various resonance hypotheses (mc stats uncertainty in parentheses)

- SM ZZ production only (EWK and QCD ZZ + 2jets)
- mis-ID bkgs are small

- 4 leptons p_T > 25 GeV
 - 2 OS, same flavour pairs
- $M_{(tag jet)} > 1 \text{ TeV}$

- SM WZ production only (EWK and QCD WZ + 2jets)
- mis-ID bkgs are small

- 3 leptons p_T > 25 GeV
 - 1 OS, same flavour pair
 - third lepton ID based on m_Z constraints
- M_(tag jet) > 1 TeV

- SM WW production only (EWK and QCD WW + 2jets)
- WZ with one lost lepton
- Wy^(*) with γ conversions
- jets faking leptons

- 2 leptons p_T > 25 GeV
 - have the same charge
- M_(tag jet) > 1 TeV

physics cases

- EWK scattering cross-section
- non-unitarized scenarios simulated as the absence of Higgs
- anomalous couplings in the EFT approach
- simplified detector performance:
 - Delphes description of the CMS detector (current, current aged, upgraded)
 - pile-up configurations according to the scenarios (50 or 140 on average)
 - reducible backgrounds considered as well
- two final states considered:

$$W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\nu\ell^{\pm}\nu$$

$$WZ \rightarrow \ell\nu\ell\ell$$

- leptons: $p_T > 25 \text{ GeV}$, $|\eta| < 2.5$
- jets: $p_T > 30 \text{ GeV}$, $|\eta| < 4.7$
- tag jets: two largest p_T ones

additional selections

- MET > 30-40 GeV
- $m_{jj} > 600-800 \text{ GeV}$, $\Delta \eta_{jj} > 2-4$
- jets: $p_T > 50 \text{ GeV}$, $|\eta| < 4.9$
- H_T (track jets) < 125-150 GeV
- Z selections vetoes when needed
- b-veto in the WW case

- results obtained with 2D template fits on sensitive variables for all the cases
- uncertainties affect normalisation and shapes of the samples
- pseudo-data fitted to obtain the expected results

source	PI-NA	PI-A	PII-TK-UP
jet energy scale	1-3%	1.5 – 4%	1–3%
jet energy resol.	5%	6.5%	5%
muon energy scale	1%	2%	1%
muon energy resol.	1%	2%	1%
electron energy scale	2%	4%	2%
electron energy resol.	2%	4%	2%
lepton efficiency	2%	2%	2%
lepton fake rate	30%	30%	30%
lepton wrong charge	30%	30%	30%
b-tag efficiency	4%	5.5%	4%
signal acceptance	2%	2%	2%
QCD scale choice	3%	3%	3%
parton densities	7%	7%	7%
LHC luminiosity	2.6%	2.6%	2.6%

- for the same-sign WW, the uncertainty on the EWK component of the total cross-section is at the order of 5% and systematically limited
- interference tested to be small and neglected for this study

- same-sign WW gives the best performances
- treat the difference between a no-Higgs scenario and SM as signal
- the excluded signal strength is an indication of the analysis sensitivity

samples generated with the Phantom code 0801.3359

result as a function of jets-faking-leptons rate scale factor

anomalous couplings limits

- study performed in the same-sign WW case only
- additional dimension-eight terms only
- 95% CL limit on the coupling coefficients

	phase I	phase II	phase I aged
S_0	1.06	1.07	1.17
S_1	3.51	3.55	3.87
M_0	0.78	0.75	0.82
M_1	1.10	1.06	1.14
M_6	1.56	1.49	1.63
M_7	1.37	1.32	1.45
T_0	0.067	0.077	0.083
T_1	0.036	0.033	0.036
T_2	0.119	0.111	0.119

Limits in the 8 TeV analysis are 30 - 60 times higher than these ones

CONS

- hard charge determination
- jet ID ambiguities
- larger backgrounds from V+jets
- harder reconstruction and PU subtraction

PROS

- additional channels
- larger statistics wrt fully leptonic
- full reconstruction of the final state in case of WW

in high mass H searches show similar performances to fully lept. analog

- same expected sensitivity (2.8 and 3.1 σ respectively)
- quite similar selections on physics objects and of VBF cuts
- very different background composition
- specific detector features could make the difference between the two experiments
- detailed simulations are necessary to consolidate the parametric studies
- judgement calls remain necessary until data arrive

Phys. Rev. Lett. 113, 141803 (2014)

Phys. Rev. Lett. 114, 051801 (2015)

the pile-up in the jets reconstruction

- 140 events per bunch crossing on average used as benchmark for the HL expectations
- add 70 GeV energy in 0.4 jet cones (and in lepton isolation cones)
- generate fake jets
- worsen the MET resolution
- impact on the central rapidity veto
- affect lepton isolation

- the PU reduction comes at the price of hard jets identification efficiency
- the number of jets gets flat after the PU subtraction
- the situation for VBS jets is less simple, since they are in the forward region

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/PileupSuppressionECFA2014

- at large p_T, hadronic decay products (e.g. W → qq) are collimated in to a single jet
- rule of thumb: the opening angle has 1/p_T dependence
- in the high m_{VV} region of interest for VBS, vector bosons originate **single fat jets** in the detector

- study the internal structure of these jets to identify the boosted object
 - find the decay products of the vector boson
 - eliminate PU and UE
 - control soft radiation

• performances of grooming techniques seem promising in the first studies

A. Schwartzmann, BOOST13

- PU reduction
- q/g separation
- color flow

e.g.

- cleaning jets from PU and nonperturbative effects
- particle ID in boosted jets

- jet substructure gives also access to:
- · jet charge
- quark-gluon discrimination
- color flow description inside jets
- ...
- need of theoretical understanding of the details of the hadronisation and shower processes

- pile-up suppression relies on pointing information of tracks to the primary vertex to ignore its charged component (e.g. CHS in CMS, JVF in ATLAS)
- we want an algorithm with large efficiency for the PV identification
- the smallest overlap possible between vertices

- ttbar sample close to VBS topology
- Run1 algorithms in use
- large vertexing efficiency even in high PU conditions

- reducing the ttbar background in the WW final states
- typical ID efficiencies used during Run1 are around 50% per b-jet
- vertices will be much more more and closer to each other, the tagging will be more difficult
- in VBS an extension of the b-tagging capability to large eta values would kill the residual background after VBS selections on jets

- small hadronic activity between the tag jets is expected for the signal (EWK process), on the contrary of the backgrounds
- the large PU reduces this effect → use variables robust against it (e.g. jets of tracks pointing to the primary vertex of the event)
- properly determine the theoretical uncertainty associated to the selection efficiency for signal and bkg

• **new jet-veto variables** dependent on y that can be resummed at the same level of p_{Tj}

- after the Higgs boson discovery, the BSM effects expected to be small
- exact LO calculation and events well generation known (0801.3359)
- **NLO** calculations: available for most of the signals, for some of the bkg only
- **EWK** corrections: unknown, expected to be large
- tri-boson production might be important as well resonant and non-resonant contributions included
- calculations with additional jets, merged to 0 jets, do not exist: relevant for CJV
- BSM parameterisations available

- ATLAS and CMS performed **feasibility studies** for some final states already
- projections calculated so far with parametric simulations
- the final results depend upon **several ingredients** at very different levels
 - N(N?)LO **simulation** of the processes
 - low p_T objects and cross-triggers
 - detailed control of detector effects and reducible backgrounds
 - physics objects reconstruction dedicated to boosted objects and jets at large $\boldsymbol{\eta}$
 - all in a very high pile-up environment
- the determination of **detector effects** is subject to a lot of unknowns
- while the potential of the HL-LHC as vector bosons collider looks very promising and its investigation is now just starting

backup slides

- parametric simulation particle-matter interaction
 - a lot of (reasonable) approximations
- realistic models of detectors
 - need a very close interaction with the experiments
 - easy to understand and modify C++ code
 - detailed can be added or removed depending on the analysis needs
- preliminary physics studies can be performed in short time (e.g SnowMass)
- can be used in parallel with full detector simulation

