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the High Luminosity Environment

• account from radiation damage 
• huge pile-up: 140 events on average 
• maintain event reconstruction performances 
• trigger in a high luminosity environment
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CMS PHASE 2
• new tracker 
• extended muons coverage 
• calorimetry electronics upgrade 
• forward calorimeter upgrade

ATLAS PHASE 2
• new pixel and strip tracker 
• calorimeter 
• trigger system



Vector Boson Scattering in ATLAS

• new physics  
• SU(2)L x U(1)Y gauge-invariant, CP-even operators with dimension larger 

than 4 in the SM Lagrangian 
• general EW Chiral Lagrangian anomalous terms (high mass resonances) 

• simplified detector performance:  
• single physics objects response studied in detailed simulation with 

dedicated samples 
• parametrised efficiencies and resolutions used to smear the analysis 

samples 
• several final states considered:
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ATLAS-PHYS-PUB-2012-005,  ATLAS-PHYS-PUB-2013-006

WW → ℓ𝜈ℓ𝜈 a4

WW → ℓ𝜈jj a4, a5

ZZ → 4ℓ cφW

W±W± → ℓ±𝜈ℓ±𝜈 fS0

WZ → ℓ𝜈ℓℓ fT1

physics objects
• leptons: pT > 25 GeV,  |η| < 2.5 
• jets: pT > 50 GeV,  |η| < 4.9 
• tag jets: two largest pT ones



the WW → ℓ𝜈ℓ𝜈 signature
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selections
• one e and one μ with opposite 

charge 
• MET > 50 GeV 
• at least two jets

backgrounds
• ttbar production 
• di-boson production 
• lepton fakes negligible 
• DY absent in this case

log(M``jj) [MeV]



the WW → ℓ𝜈 (jj) signature
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selections
• one lepton pT > 60 GeV 
• MET > 25 GeV 
• Wℓv pT > 200 GeV 
• 1 fat jet with pT > 300 GeV and  

MJ ∈ (60, 100) GeV 
• M(tag jet) > 250 GeV, Δη(tag jet) > 5 
• top mass resonances vetoed

backgrounds
• ttbar production 
• di-boson production 
• W + jets not significant

sensitivity to various resonance hypotheses  
(mc stats uncertainty in parentheses)



the ZZ → 4ℓ signature
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selections
• 4 leptons pT > 25 GeV 

• 2 OS, same flavour pairs  
• M(tag jet) > 1 TeV

backgrounds
• SM ZZ production only (EWK and 

QCD ZZ + 2jets) 
• mis-ID bkgs are small

34 TeV-2

16 TeV-2



the WZ → ℓ𝜈ℓℓ signature
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selections
• 3 leptons pT > 25 GeV 

• 1 OS, same flavour pair 
• third lepton ID based on mZ 

constraints 
• M(tag jet) > 1 TeV

backgrounds
• SM WZ production only (EWK 

and QCD WZ + 2jets) 
• mis-ID bkgs are small

M3`⌫ [TeV]

1.3 TeV-2

0.6 TeV-4



the W±W± → ℓ±𝜈 ℓ±𝜈  final state
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selections
• 2 leptons pT > 25 GeV 

• have the same charge 
• M(tag jet) > 1 TeV

backgrounds
• SM WW production only (EWK 

and QCD WW + 2jets) 
• WZ with one lost lepton 
• Wγ(*) with γ conversions 
• jets faking leptons 

M``jj [TeV]

10 TeV-2

4.5 TeV-4



Vector Boson Scattering in CMS

• physics cases  
• EWK scattering cross-section 
• non-unitarized scenarios simulated as the absence of Higgs 
• anomalous couplings in the EFT approach 

• simplified detector performance:  
• Delphes description of the CMS detector (current, current aged, upgraded) 
• pile-up configurations according to the scenarios (50 or 140 on average) 
• reducible backgrounds considered as well 

• two final states considered:
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• leptons: pT > 25 GeV,  |η| < 2.5 
• jets: pT > 30 GeV,  |η| < 4.7 
• tag jets: two largest pT ones

W±W± → ℓ±𝜈ℓ±𝜈 

WZ → ℓ𝜈ℓℓ

additional selections
• MET > 30-40 GeV 
• mjj > 600-800 GeV, Δηjj > 2-4 
• jets: pT > 50 GeV,  |η| < 4.9 
• HT (track jets) < 125-150 GeV  
• Z selections vetoes when needed 
• b-veto in the WW case



the same-sign WW final state example
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• results obtained with 2D template fits on sensitive variables for all the 
cases 

• uncertainties affect normalisation and shapes of the samples 
• pseudo-data fitted to obtain the expected results

preliminary



the EWK cross-section

• for the same-sign WW, the uncertainty on the EWK component of the total 
cross-section is at the order of 5% and systematically limited 

• interference tested to be small and neglected for this study
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WZ final state

preliminary



partial unitarization

• same-sign WW gives the best performances 
• treat the difference between a no-Higgs scenario and SM as signal 
• the excluded signal strength is an indication of the analysis sensitivity
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result as a function of 
jets-faking-leptons rate 

scale factor

samples generated with 
the Phantom code

0801.3359

preliminary



• study performed in the same-sign WW case only 
• additional dimension-eight terms only 
• 95% CL limit on the coupling coefficients

anomalous couplings limits
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Phys.Rev.Lett. 114 (2015) 



semi-leptonic final states
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PROS
• additional channels 
• larger statistics wrt fully leptonic 
• full reconstruction of the final 

state in case of WW 

CONS
• hard charge determination 
• jet ID ambiguities 
• larger backgrounds from V+jets 
• harder reconstruction and PU 

subtraction
• in high mass H searches show similar performances to fully lept. analog

1504.00936



comparing Run1 ATLAS and CMS analyses

• same expected sensitivity (2.8 and 3.1 σ respectively) 
• quite similar selections on physics objects and of VBF cuts 
• very different background composition 
• specific detector features could make the difference between the two 

experiments 
• detailed simulations are necessary to consolidate the parametric studies 
• judgement calls remain necessary until data arrive
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Phys. Rev. Lett. 113, 141803 (2014) Phys. Rev. Lett. 114, 051801 (2015)



the pile-up in the jets reconstruction

• 140 events per bunch crossing on average used as benchmark for the HL 
expectations 

• add 70 GeV energy in 0.4 jet cones (and in lepton isolation cones) 
• generate fake jets 
• worsen the MET resolution 
• impact on the central rapidity veto
• affect lepton isolation
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expected performances

• the PU reduction comes at the price of hard jets identification efficiency 
• the number of jets gets flat after the PU subtraction 
• the situation for VBS jets is less simple, since they are in the forward region
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/PileupSuppressionECFA2014



Boosted Objects and Jet Substructure

• at large pT, hadronic decay products (e.g. W → qq) are 
collimated in to a single jet 

• rule of thumb:  the opening angle has 1/pT dependence  
• in the high mVV region of interest for VBS, vector bosons 

originate single fat jets in the detector 
• study the internal structure of these jets to identify the boosted object 

• find the decay products of the vector boson 
• eliminate PU and UE
• control soft radiation
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dr ⇠ 2m

pT

CMS PAS HIG-13-008



behaviour with increasing PU
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Z’ → ttbar

di-jet

• performances of grooming techniques seem promising in the first studies

A. Schwartzmann, BOOST13



If you ain’t boostin’, you ain’t livin’

• jet substructure gives also access to: 
• jet charge
• quark-gluon discrimination 
• color flow description inside jets 
• … 

• need of theoretical understanding  
of the details of the hadronisation  
and shower processes
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e.g. 
• PU reduction 
• q/g separation 
• color flow

e.g. 
• cleaning jets from 

PU and non-
perturbative effects 

• particle ID in 
boosted jets

(N.V. Tran)



primary vertex determination

• pile-up suppression relies on pointing information of tracks to the primary 
vertex to ignore its charged component (e.g. CHS in CMS, JVF in ATLAS) 

• we want an algorithm with large efficiency for the PV identification 
• the smallest overlap possible between vertices
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• ttbar sample close to VBS topology 
• Run1 algorithms in use 
• large vertexing efficiency even in high PU conditions

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/PLOT-UPGRADE-2014-003/



b-tagging

• reducing the ttbar background in the WW final states 
• typical ID efficiencies used during Run1 are around 50% per b-jet 
• vertices will be much more more and closer to each other, the tagging will 

be more difficult 
• in VBS an extension of the b-tagging capability to large eta values would 

kill the residual background after VBS selections on jets 
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• small hadronic activity between the tag jets is expected for the signal 
(EWK process), on the contrary of the backgrounds 

• the large PU reduces this effect → use variables robust against it  
(e.g. jets of tracks pointing to the primary vertex of the event) 

• properly determine the theoretical uncertainty associated to the selection 
efficiency for signal and bkg

the central rapidity gap
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Stewart-Tackmann, JVE, 
yield and migration 
uncertainties. 

higher order 
calculations

• new jet-veto variables dependent on y that 
can be resummed at the same level of pTj

arXiv:1412.4792 1308.4634, 1206.4998



• after the Higgs boson discovery, the BSM effects expected to be small  
• exact LO calculation and events well generation known (0801.3359) 
• NLO calculations: available for most of the signals, for some of the bkg only 
• EWK corrections: unknown, expected to be large 
• tri-boson production might be important as well resonant and non-resonant 

contributions included 
• calculations with additional jets, merged to 0 jets, do not exist: relevant for 

CJV 
• BSM parameterisations available

the simulation of the events
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Phys.Rev. D83 (2011) 114043JHEP 0607 (2006) 015 

LO

QCD NLO

scales x mW

JHEP 0703 (2007) 078

born

ewk nlo



conclusions

• ATLAS and CMS performed feasibility studies for some final states already 
• projections calculated so far with parametric simulations 

• the final results depend upon several ingredients at very different levels 
• N(N?)LO simulation of the processes 
• low pT objects and cross-triggers  
• detailed control of detector effects and reducible backgrounds 
• physics objects reconstruction dedicated to boosted objects and jets at 

large η 
• all in a very high pile-up environment 

• the determination of detector effects is subject to a lot of unknowns 
• while the potential of the HL-LHC as vector bosons collider looks very 

promising and its investigation is now just starting
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thanks to Markus Schumacher, Anja Vest, Nhan V. Tran for useful discussions



backup slides
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• parametric simulation particle-matter interaction 
• a lot of (reasonable) approximations 

• realistic models of detectors 
• need a very close interaction with the experiments 
• easy to understand and modify C++ code 
• detailed can be added or removed depending on the analysis needs 

• preliminary physics studies can be performed in short time (e.g SnowMass) 
• can be used in parallel with full detector simulation 
• impact of pile-up on isolation, jet structure, multiplicities ...

the Delphes tool
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M. Selvaggi tutorial

1307.6346


