Electroweakly Coupled New Physics: Experimental Prospects Dominick Olivito University of California, San Diego on Behalf of the ATLAS and CMS Collaborations ### Why search for electroweak SUSY production? - Electroweak production may dominate if all strongly-coupled SUSY partners are too heavy to be produced - No evidence so far of strong SUSY production at the LHC - Weakly Interacting Massive Particles (WIMPs) are a popular hypothesis for Dark Matter - In R-parity conserving SUSY, the lightest neutralino is a potential candidate if it is the Lightest Supersymmetric Particle (LSP) - Mass near electroweak scale → potentially see at LHC - From Naturalness, expect higgsinos (SUSY partners of Higgs bosons) with masses of less than a few hundred GeV ## This talk: focus on $\chi^{\pm}\chi^{0}$ production, with largest electroweak cross section Direct decays to W and Z/h + LSP, if sleptons are heavy ## Electroweak searches benefit from large integrated luminosity - Cross section for $\chi^{\pm}\chi^0$ production ranges from 1pb to 1fb, going from masses of 300 to 1100 GeV - The full HL-LHC dataset is needed for high mass sensitivity #### Use dedicated searches to target different decay modes ATLAS & CMS 3ℓ : W($\ell\nu$)Z($\ell\ell$) ATLAS 3 ℓ : W(ℓ ν)h(WW,ττ) <u>CMS</u> 1**ℓ2b**: W(ℓv)h(bb) All results are taken from: ATLAS: ATL-PHYS-PUB-2014-010 **CMS:** CMS-PAS-SUS-14-012 #### Results are interpreted using Simplified Models #### Future projections focus on region where Z/h are on-shell # With 8 TeV results, probe $\chi^{\pm}\chi^{0}$ production up to 270-420 GeV in M(χ^{\pm}) #### The main background to WZ+MET is SM production of WZ - Use extra MET from signal to suppress the WZ background - Requirements on MET, M_T of lepton from W - Triboson production and ttV also contribute at high MET → irreducible - Reducible background from ttbar when lepton from a b-quark is misidentified as prompt - Require lepton isolation, b-jet veto to suppress ttbar #### CMS selects 3 lepton events and bins them in MET and M₋ - Require 3 leptons (e,μ): p_T > 120, 90, 40 GeV - Veto on 4th lepton: $p_T > 10$ GeV, $|\eta| < 2.4$ - Form OSSF pair with M($\ell\ell$) closest to M_z, require 75 < M($\ell\ell$) < 105 GeV - Veto event if b-jet $p_T > 30$ GeV, $|\eta| < 2.4$ - Or any jet with $p_T > 100 \text{ GeV}$ - Compute $M_{\scriptscriptstyle T}$ with lepton not used for Z - Bin in MET and $M_{\scriptscriptstyle T}$ ## Potential to see signal in the tails of MET and M_T Orthogonal regions are combined statistically to determine discovery sensitivity $m_{\tilde{\chi}_{4}^{\pm}}, m_{\tilde{\chi}_{4}^{0}} = 500, 100 \,\text{GeV}$ | <u> </u> | | | | | | | | |-------------|----|----------------------|-----|--|--|--|--| | SR | | Total SM | SMS | | | | | | | 1 | 1010000 ± 190000 | 21 | | | | | | | 2 | 810000 ± 150000 | 73 | | | | | | | 3 | 167000 ± 26000 | 300 | | | | | | | 4 | 99400 ± 8900 | 41 | | | | | | | 5 | 41300 ± 9100 | 66 | | | | | | | 6 | 2700 ± 1300 | 140 | | | | | | on-Z 7
8 | | 10900 ± 1600 | 150 | | | | | | | | 660 ± 230 | 240 | | | | | | | 9 | 22.9 ± 6.3 | 63 | | | | | | | 10 | 282 ± 82 | 50 | | | | | | | 11 | 72 ± 16 | 120 | | | | | | | 12 | 0.8 ± 0.3 | 0 | | | | | | | 13 | 21.3 ± 2.0 | 6.0 | | | | | | | 14 | 32.9 ± 4.9 | 21 | | | | | | | 15 | 1.5 ± 0.4 | 0 | | | | | looser lepton p_T cuts, no jet veto #### Discovery reach extends to 900 GeV with 3000/fb 3% per lepton, 1% for trigger, scale MET by \pm 5% amounts to 10 - 25% depending on signal region ### ATLAS optimizes signal regions for discovery and exclusion - Require 3 leptons with $p_{T} > 50$ GeV, $|\eta| < 2.47$ (2.4) for e (μ) - Veto on 4th lepton with $p_{T} > 10 \text{ GeV}$ - Veto on b-tagged jet with $p_{\tau} > 20$ GeV, |eta| < 2.5 - Z candidate from OSSF pair, compute M_⊤ using non-Z lepton - SRA optimized for discovery, looser cuts - SRB,C,D optimized for limit setting, tighter cuts | Selection | SRA | SRB | SRC | SRD | | |---|------------|-------|-------|-------|--| | $m_{ m SFOS}[{ m GeV}]$ | 81.2-101.2 | | | | | | # b-tagged jets | | (|) | | | | lepton p_T (1,2,3)[GeV] | > 50 | | | | | | $E_{ m T}^{ m miss}[{ m GeV}]$ | > 250 | > 300 | > 400 | > 500 | | | m_{T} [GeV] | > 150 | > 200 | > 200 | > 200 | | | $\langle \mu \rangle = 60,300 \text{fb}^{-1} \text{scenario}$ | yes | yes | yes | _ | | | $\langle \mu \rangle = 140,3000 \text{fb}^{-1} \text{scenario}$ | yes | yes | yes | yes | | ## As with CMS, discovery potential in tails of MET and M_T To evaluate sensitivity, regions are made orthogonal and significances combined | Sample | SRA | SRB | SRC | SRD | | |---|-----------------------------------|---------------|-----------------|----------------|--| | Scenario | $3000\mathrm{fb^{-1}}, \mu = 140$ | | | | | | WZ | 200±5 | 59.4±2.5 | 22.0±1.5 | 8.3±1.0 | | | ZZ | 0 | 0 | 0 | 0 | | | VVV | 24.3±1.9 | 12.1±1.4 | 5.4 ± 0.8 | 2.0 ± 0.5 | | | Wh | 0 | 0 | 0 | 0 | | | $t\bar{t}V$ | 14.4±2.8 | 4.2 ± 1.6 | 0.31 ± 0.31 | 0 | | | $tar{t}$ | 0 | 0 | 0 | 0 | | | Σ ΜС | 239±6 | 75.6±3.3 | 27.7±1.8 | 10.3±1.1 | | | WZ-mediated | | | | | | | $m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (400,0) \text{ GeV}$ | 407±6 | 224±5 | 67.9±2.6 | 19.7±1.4 | | | $m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (600,0) \text{ GeV}$ | 194.8±2.0 | 148.9±1.7 | 81.6±1.3 | 33.5±0.8 | | | $m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (800,0) \text{ GeV}$ | 69.6±0.6 | 59.1±0.6 | 42.4±0.5 | 25.2 ± 0.4 | | | $m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (1000, 0) \text{ GeV}$ | 22.94±0.19 | 20.42±0.18 | 16.36±0.16 | 11.55±0.14 | | after all cuts except M_T #### With 3000/fb, discovery reach extends to 820 GeV, exclusion to 1100 GeV **Background systematic uncertainty:** 30% # ATLAS selects 3 lepton events focusing on $W(\ell v)h(WW)$ - Same object selection as WZ+MET search - Events with exactly 3 leptons and an OSSF pair are vetoed to reduce the WZ background - A cut on the invariant mass of the OS pair closest in ΔR reduces the ttbar and WWW backgrounds - Require large M_T for each lepton | Selection | SRE | SRF | SRG | SRH | | |--|-------|-------|-------|-------|--| | SFOS pair | veto | | | | | | # b-tagged jets | | (|) | | | | $E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV] | | > 1 | 100 | | | | $m_{\rm OS}^{{ m m}in\Delta R}$ [GeV] | < 75 | | | | | | $m_{\rm T}(\ell_1)$ [GeV] | > 200 | > 200 | > 300 | > 400 | | | $m_{\rm T}(\ell_2)$ [GeV] | > 100 | > 150 | > 150 | > 150 | | | $m_{\rm T}(\ell_3)$ [GeV] | > 100 | > 100 | > 100 | > 100 | | | $\langle \mu \rangle = 60, 300 \text{fb}^{-1} \text{scenario}$ | yes | yes | yes | _ | | | $\langle \mu \rangle = 140,3000\mathrm{fb^{-1}}$ scenario | yes | yes | yes | yes | | | | | | | | | # ATLAS also searches for $W(\ell v)h(\tau \tau)$ by selecting 1 lepton and 2 τ_h - Object selections same as ATLAS 3ℓ analysis - Select τ_h with p_T > 20 GeV, require OS pair - Require M(ττ) consistent with Higgs mass - Also require large MET, M_T , sum of τ_h p_T values - Largest background is ttbar, then WZ and WW | Selection | SR1ℓ2τ | |--|--------| | $\# e, \mu$ | 1 | | # $ au$ | 2 (OS) | | # b-tagged jets | 0 | | $E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV] | > 250 | | $m_{ au au}$ [GeV] | 80-130 | | $ p_T(\tau_1) + p_T(\tau_2) $ [GeV] | > 190 | | $m_{\rm T}(\ell)$ [GeV] | > 130 | ### The 3ℓ search has good sensitivity in tighter signal regions - The $1\ell 2\tau$ search has more difficult backgrounds - Sees S/B ~ 1 or less | Sample | SRE | SRF | SRG | SRH | | | |---|----------|--------------------------------------|---------------|-----------------|--|--| | Scenario | | $3000 \mathrm{fb^{-1}}, \mu = 140$ | | | | | | WZ | 6.2±0.8 | 2.9 ± 0.6 | 0.76±0.29 | 0.43 ± 0.22 | | | | ZZ | 0 | 0 | 0 | 0 | | | | VVV | 34±4 | 17.5 ± 3.1 | 1.3 ± 0.8 | 0.8 ± 0.6 | | | | Wh | 10.1±2.9 | 2.5 ± 1.5 | 0.8 ± 0.8 | 0 | | | | $tar{t}V$ | 9.6±1.8 | 4.1 ± 1.3 | 1.1 ± 0.6 | 0.4 ± 0.4 | | | | $t\bar{t}$ | 121±10 | 36±5 | 3.9 ± 1.8 | 0 | | | | Σ ΜС | 181±11 | 63±6 | 7.9±2.2 | 1.6±0.7 | | | | Wh-mediated | | | | | | | | $m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (200,0) \text{ GeV}$ | 181±31 | 99±23 | 27±12 | 0 | | | | $m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (300,0) \text{ GeV}$ | 166±16 | 121±13 | 46±8 | 13±4 | | | | $m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (500,0) \text{ GeV}$ | 57±4 | 46.1±3.4 | 31.9±2.8 | 20.5 ± 2.2 | | | | $m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (700,0) \text{ GeV}$ | 18.1±1.1 | 15.9±1.0 | 12.8±0.9 | 9.1±0.8 | | | | SM background | yield | SUSY signal | yield | |----------------|-------|--|-------| | WZ | 2.3 | $m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (200,0) \text{ GeV}$ | 20 | | VVV | 0.21 | $m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (500,200) \text{ GeV}$ | 9 | | $t\bar{t} + V$ | 0.03 | $m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (700,0) \text{ GeV}$ | 7 | | $t\bar{t}$ | 8.1 | $m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (1200,600) \text{ GeV}$ | 0.5 | | WW | 3.5 | | | | W+ jets | 1.4 | | | | Total | 15.5 | | | | | | | | $1\ell 2\tau$ search #### Discovery reach extends to 650 GeV using the 3ℓ channel, with 3000/fb - The 3t channel exclusion reaches 950 GeV - The $1\ell 2\tau$ channel doesn't achieve discovery sensitivity by itself but can exclude up to 550 GeV ## CMS searches for $W(\ell v)h(bb)+MET$, which has several backgrounds - ttbar $\rightarrow 1\ell$, W+jets, WZ $\rightarrow \ell \nu bb$ - Suppress using M_T cut - MET resolution is key to having a sharp peak in M_T - ttbar $\rightarrow 2\ell$ - Suppress using 2nd lepton veto, kinematic variable with endpoint - SM WH is small after analysis cuts EPJC 74 (2014) 3036 ### CMS selects events with exactly 1 lepton and 2 b-jets - Lepton: $p_{T} > 40 \text{ GeV}$, $|\eta| < 2.4$ - Veto additional leptons with p_⊤ > 10 GeV - Jets: $p_T > 30$, $|\eta| < 2.4$ - Require exactly 2 jets to suppress ttbar → 1 ℓ - Cut on kinematic variable M_{CT}(b₁,b₂): has endpoint for ttbar but not for signal - Require M(bb) consistent with Higgs mass | Cut | Signal Requirement | | | |----------------------------------|-------------------------|--|--| | N(leptons) | = 1 | | | | N(jets) | = 2 | | | | N(b-tags) | = 2 | | | | $M_{bar{b}}$ | ∈[90,150] GeV | | | | M_T | $> 100~{ m GeV}$ | | | | M_{CT} | > 160 GeV | | | | $E_{\mathrm{T}}^{\mathrm{miss}}$ | > 200,300,400(,500) GeV | | | #### As in 3 lepton analyses, sensitivity comes in the tail of MET | Sample | $E_{\rm T}^{\rm miss} > 200{ m GeV}$ | $E_{\rm T}^{\rm miss} > 300{\rm GeV}$ | $E_{\mathrm{T}}^{\mathrm{miss}} > 400\mathrm{GeV}$ | $E_{\rm T}^{\rm miss} > 500{\rm GeV}$ | |-------------------|--------------------------------------|---------------------------------------|--|---------------------------------------| | tt | 1000 ± 260 | 261 ± 130 | 17 ± 13 | 0.5 ± 0.2 | | V + jets | 14 ± 4 | 1.2 ± 0.3 | 0.1 ± 0.1 | 0.0 ± 0.0 | | single top | 291 ± 38 | 66 ± 11 | 13 ± 4 | 2.5 ± 0.8 | | diboson | 87 ± 16 | 24 ± 5 | 8.4 ± 2.0 | 4.4 ± 1.4 | | Other SM | 14 ± 5 | 2.7 ± 0.6 | 0.6 ± 0.1 | 0.1 ± 0.0 | | Total SM | 1410 ± 260 | 354 ± 130 | 39 ± 14 | 7.5 ± 1.6 | | WH signal (200,1) | 1340 ± 140 | 220 ± 57 | 73 ± 33 | 29 ± 21 | | WH signal (500,1) | 605 ± 18 | 367 ± 14 | 154 ± 9 | 40 ± 5 | | WH signal (900,1) | 60 ± 1 | 51 ± 1 | 38 ± 1 | 24 ± 1 | | Natural Model 2 | 276 ± 4 | 150 ± 3 | 46 ± 2 | 11 ± 1 | #### Discovery reach extends to 950 GeV with 3000/fb Discussion on later slide #### Several theoretical and experimental assumptions enter these results #### Theory: Simplified Models assume 100% branching ratio to Z or h. What if both decays are present? #### **Experiment:** - How would these results look if the detectors are not upgraded for HL-LHC? - Similarly, how would they look if the performance estimates are too optimistic? - Sometimes systematic uncertainties are assumed based on improving the 8 TeV analyses. What if these are optimistic? ### With 50% branching to Z/h, combining searches gives good sensitivity ## An aged (or reduced performance) detector degrades sensitivity - Based on full simulation, emulated "aged" detector with: - 16% worse e/μ efficiency, 33% worse b-tagging efficiency - 40 GeV worse MET resolution → impacts M_T #### Larger systematic uncertainties reduce potential discovery reach - CMS 1²b search: total background uncertainty of 25% at 8 TeV, dominated by control sample size - Assumed this can be reduced to 12.5% for results shown - With 25% uncertainty, discovery reach decreases from 950 GeV to less than 900 GeV - Exclusion limits not very sensitive to background uncertainty | Sample | $E_{\rm T}^{\rm miss} > 200{ m GeV}$ | $E_{\rm T}^{\rm miss} > 300{\rm GeV}$ | $E_{\rm T}^{\rm miss} > 400{ m GeV}$ | $E_{\rm T}^{\rm miss} > 500{\rm GeV}$ | | | |-------------------|--------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|--|--| | | | 25% Background Uncertainty | | | | | | WH signal (200,1) | 2.8 | 1.9 | 4.3 | 5.5 | | | | WH signal (500,1) | 1.4 | 3.0 | 7.6 | 6.9 | | | | WH signal (900,1) | - | 0.4 | 2.5 | 4.7 | | | | Natural Model 2 | 0.6 | 1.3 | 2.9 | 2.4 | | | | | | 12.5% Background Uncertainty | | | | | | WH signal (200,1) | 5.8 | 3.8 | 6.7 | 6.8 | | | | WH signal (500,1) | 2.9 | 5.9 | 12 | 8.6 | | | | WH signal (900,1) | - | 0.9 | 3.9 | 5.8 | | | | Natural Model 2 | 1.4 | 2.7 | 4.7 | 3.0 | | | ### Additional channels were used at 8 TeV to improve sensitivity **3** ℓ : W($\ell \nu$)Z($\ell \ell$) **OS 2ℓ2j:** W(jj)Z(ℓℓ) **1** ℓ **2b**: W($\ell \nu$)h(bb) **1** ℓ **2** γ : W(ℓ ν)h($\gamma\gamma$) **SS 2** ℓ : W($\ell^{\pm}\nu$)h, h \rightarrow W($\ell^{\pm}\nu$)W(jj) **≥3***ℓ* : W(*ℓ*ν)h(WW,ττ,ZZ) #### Conclusions - 8 TeV searches have only begun to probe electroweak SUSY production, with limits extending to 270-420 GeV for $\chi^{\pm}\chi^{0}$ - Limits for higher masses exist, but assuming light sleptons - HL-LHC and 3000/fb extends discovery reach substantially beyond 300/fb - For WZ+MET, ~300 GeV further reach moving to 3000/fb - For Wh+MET, discovery potential up to 950 GeV with 3000/fb - Almost no discovery potential at 300/fb in these studies - Many assumptions enter these projections - Excellent performance and control of systematic uncertainties will be needed to maximize the discovery potential at HL-LHC #### **Bonus Slides** #### Parameterized simulations are used for these studies - Also 3000/fb is a lot of events to generate → strategy needed - At 14 TeV, ttbar xsec is ~1nb → 3 billion events - Focus on kinematic tails instead of bulk #### ATLAS: - Uses parameterized simulation tuned based on full simulation - Generates events with a gen-level MET cut, 50 or 120 GeV #### • <u>CMS</u>: - Uses Delphes parameterized simulation with a tune based on full simulation - Generates events in bins of S_T (scalar sum of p_T for all stable particles) #### Branching ratio impact for CMS WH+MET search #### A natural model with W+h/Z+MET