

Electroweakly Coupled New Physics: Experimental Prospects

Dominick Olivito
University of California, San Diego
on Behalf of the ATLAS and CMS Collaborations

Why search for electroweak SUSY production?

- Electroweak production may dominate if all strongly-coupled SUSY partners are too heavy to be produced
 - No evidence so far of strong SUSY production at the LHC
- Weakly Interacting Massive Particles (WIMPs) are a popular hypothesis for Dark Matter
 - In R-parity conserving SUSY, the lightest neutralino is a potential candidate if it is the Lightest Supersymmetric Particle (LSP)
 - Mass near electroweak scale → potentially see at LHC
- From Naturalness, expect higgsinos (SUSY partners of Higgs bosons) with masses of less than a few hundred GeV

This talk: focus on $\chi^{\pm}\chi^{0}$ production, with largest electroweak cross section

Direct decays to W and Z/h + LSP, if sleptons are heavy

Electroweak searches benefit from large integrated luminosity

- Cross section for $\chi^{\pm}\chi^0$ production ranges from 1pb to 1fb, going from masses of 300 to 1100 GeV
- The full HL-LHC dataset is needed for high mass sensitivity

Use dedicated searches to target different decay modes

ATLAS & CMS 3ℓ : W($\ell\nu$)Z($\ell\ell$)

ATLAS
3 ℓ : W(ℓ ν)h(WW,ττ)

<u>CMS</u> 1**ℓ2b**: W(ℓv)h(bb)

All results are taken from:

ATLAS: ATL-PHYS-PUB-2014-010

CMS: CMS-PAS-SUS-14-012

Results are interpreted using Simplified Models

Future projections focus on region where Z/h are on-shell

With 8 TeV results, probe $\chi^{\pm}\chi^{0}$ production up to 270-420 GeV in M(χ^{\pm})

The main background to WZ+MET is SM production of WZ

- Use extra MET from signal to suppress the WZ background
 - Requirements on MET, M_T of lepton from W
- Triboson production and ttV also contribute at high MET → irreducible
- Reducible background from ttbar when lepton from a b-quark is misidentified as prompt
 - Require lepton isolation, b-jet veto to suppress ttbar

CMS selects 3 lepton events and bins them in MET and M₋

- Require 3 leptons (e,μ): p_T > 120, 90, 40 GeV
- Veto on 4th lepton: $p_T > 10$ GeV, $|\eta| < 2.4$
- Form OSSF pair with M($\ell\ell$) closest to M_z, require 75 < M($\ell\ell$) < 105 GeV
- Veto event if b-jet $p_T > 30$ GeV, $|\eta| < 2.4$
 - Or any jet with $p_T > 100 \text{ GeV}$
- Compute $M_{\scriptscriptstyle T}$ with lepton not used for Z
 - Bin in MET and $M_{\scriptscriptstyle T}$

Potential to see signal in the tails of MET and M_T

Orthogonal regions are combined statistically to determine discovery sensitivity

 $m_{\tilde{\chi}_{4}^{\pm}}, m_{\tilde{\chi}_{4}^{0}} = 500, 100 \,\text{GeV}$

<u> </u>							
SR		Total SM	SMS				
	1	1010000 ± 190000	21				
	2	810000 ± 150000	73				
	3	167000 ± 26000	300				
	4	99400 ± 8900	41				
	5	41300 ± 9100	66				
	6	2700 ± 1300	140				
on-Z 7 8		10900 ± 1600	150				
		660 ± 230	240				
	9	22.9 ± 6.3	63				
	10	282 ± 82	50				
	11	72 ± 16	120				
	12	0.8 ± 0.3	0				
	13	21.3 ± 2.0	6.0				
	14	32.9 ± 4.9	21				
	15	1.5 ± 0.4	0				

looser lepton p_T cuts, no jet veto

Discovery reach extends to 900 GeV with 3000/fb

3% per lepton, 1% for trigger, scale MET by \pm 5% amounts to 10 - 25% depending on signal region

ATLAS optimizes signal regions for discovery and exclusion

- Require 3 leptons with $p_{T} > 50$ GeV, $|\eta| < 2.47$ (2.4) for e (μ)
 - Veto on 4th lepton with $p_{T} > 10 \text{ GeV}$
- Veto on b-tagged jet with $p_{\tau} > 20$ GeV, |eta| < 2.5
- Z candidate from OSSF pair, compute M_⊤ using non-Z lepton
- SRA optimized for discovery, looser cuts
- SRB,C,D optimized for limit setting, tighter cuts

Selection	SRA	SRB	SRC	SRD	
$m_{ m SFOS}[{ m GeV}]$	81.2-101.2				
# b-tagged jets		()		
lepton p_T (1,2,3)[GeV]	> 50				
$E_{ m T}^{ m miss}[{ m GeV}]$	> 250	> 300	> 400	> 500	
m_{T} [GeV]	> 150	> 200	> 200	> 200	
$\langle \mu \rangle = 60,300 \text{fb}^{-1} \text{scenario}$	yes	yes	yes	_	
$\langle \mu \rangle = 140,3000 \text{fb}^{-1} \text{scenario}$	yes	yes	yes	yes	

As with CMS, discovery potential in tails of MET and M_T

 To evaluate sensitivity, regions are made orthogonal and significances combined

Sample	SRA	SRB	SRC	SRD	
Scenario	$3000\mathrm{fb^{-1}}, \mu = 140$				
WZ	200±5	59.4±2.5	22.0±1.5	8.3±1.0	
ZZ	0	0	0	0	
VVV	24.3±1.9	12.1±1.4	5.4 ± 0.8	2.0 ± 0.5	
Wh	0	0	0	0	
$t\bar{t}V$	14.4±2.8	4.2 ± 1.6	0.31 ± 0.31	0	
$tar{t}$	0	0	0	0	
Σ ΜС	239±6	75.6±3.3	27.7±1.8	10.3±1.1	
WZ-mediated					
$m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (400,0) \text{ GeV}$	407±6	224±5	67.9±2.6	19.7±1.4	
$m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (600,0) \text{ GeV}$	194.8±2.0	148.9±1.7	81.6±1.3	33.5±0.8	
$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (800,0) \text{ GeV}$	69.6±0.6	59.1±0.6	42.4±0.5	25.2 ± 0.4	
$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (1000, 0) \text{ GeV}$	22.94±0.19	20.42±0.18	16.36±0.16	11.55±0.14	

after all cuts except M_T

With 3000/fb, discovery reach extends to 820 GeV, exclusion to 1100 GeV

Background systematic uncertainty: 30%

ATLAS selects 3 lepton events focusing on $W(\ell v)h(WW)$

- Same object selection as WZ+MET search
- Events with exactly 3 leptons and an OSSF pair are vetoed to reduce the WZ background
- A cut on the invariant mass of the OS pair closest in ΔR reduces the ttbar and WWW backgrounds
- Require large M_T for each lepton

Selection	SRE	SRF	SRG	SRH	
SFOS pair	veto				
# b-tagged jets		()		
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]		> 1	100		
$m_{\rm OS}^{{ m m}in\Delta R}$ [GeV]	< 75				
$m_{\rm T}(\ell_1)$ [GeV]	> 200	> 200	> 300	> 400	
$m_{\rm T}(\ell_2)$ [GeV]	> 100	> 150	> 150	> 150	
$m_{\rm T}(\ell_3)$ [GeV]	> 100	> 100	> 100	> 100	
$\langle \mu \rangle = 60, 300 \text{fb}^{-1} \text{scenario}$	yes	yes	yes	_	
$\langle \mu \rangle = 140,3000\mathrm{fb^{-1}}$ scenario	yes	yes	yes	yes	

ATLAS also searches for $W(\ell v)h(\tau \tau)$ by selecting 1 lepton and 2 τ_h

- Object selections same as ATLAS 3ℓ analysis
- Select τ_h with p_T > 20 GeV, require OS pair
- Require M(ττ) consistent with Higgs mass
- Also require large MET, M_T , sum of τ_h p_T values
- Largest background is ttbar, then WZ and WW

Selection	SR1ℓ2τ
$\# e, \mu$	1
# $ au$	2 (OS)
# b-tagged jets	0
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 250
$m_{ au au}$ [GeV]	80-130
$ p_T(\tau_1) + p_T(\tau_2) $ [GeV]	> 190
$m_{\rm T}(\ell)$ [GeV]	> 130

The 3ℓ search has good sensitivity in tighter signal regions

- The $1\ell 2\tau$ search has more difficult backgrounds
 - Sees S/B ~ 1 or less

Sample	SRE	SRF	SRG	SRH		
Scenario		$3000 \mathrm{fb^{-1}}, \mu = 140$				
WZ	6.2±0.8	2.9 ± 0.6	0.76±0.29	0.43 ± 0.22		
ZZ	0	0	0	0		
VVV	34±4	17.5 ± 3.1	1.3 ± 0.8	0.8 ± 0.6		
Wh	10.1±2.9	2.5 ± 1.5	0.8 ± 0.8	0		
$tar{t}V$	9.6±1.8	4.1 ± 1.3	1.1 ± 0.6	0.4 ± 0.4		
$t\bar{t}$	121±10	36±5	3.9 ± 1.8	0		
Σ ΜС	181±11	63±6	7.9±2.2	1.6±0.7		
Wh-mediated						
$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (200,0) \text{ GeV}$	181±31	99±23	27±12	0		
$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (300,0) \text{ GeV}$	166±16	121±13	46±8	13±4		
$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (500,0) \text{ GeV}$	57±4	46.1±3.4	31.9±2.8	20.5 ± 2.2		
$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (700,0) \text{ GeV}$	18.1±1.1	15.9±1.0	12.8±0.9	9.1±0.8		

SM background	yield	SUSY signal	yield
WZ	2.3	$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (200,0) \text{ GeV}$	20
VVV	0.21	$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (500,200) \text{ GeV}$	9
$t\bar{t} + V$	0.03	$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (700,0) \text{ GeV}$	7
$t\bar{t}$	8.1	$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (1200,600) \text{ GeV}$	0.5
WW	3.5		
W+ jets	1.4		
Total	15.5		

 $1\ell 2\tau$ search

Discovery reach extends to 650 GeV using the 3ℓ channel, with 3000/fb

- The 3t channel exclusion reaches 950 GeV
- The $1\ell 2\tau$ channel doesn't achieve discovery sensitivity by itself but can exclude up to 550 GeV

CMS searches for $W(\ell v)h(bb)+MET$, which has several backgrounds

- ttbar $\rightarrow 1\ell$, W+jets, WZ $\rightarrow \ell \nu bb$
 - Suppress using M_T cut
 - MET resolution is key to having a sharp peak in M_T
- ttbar $\rightarrow 2\ell$
 - Suppress using 2nd lepton veto, kinematic variable with endpoint
- SM WH is small after analysis cuts

EPJC 74 (2014) 3036

CMS selects events with exactly 1 lepton and 2 b-jets

- Lepton: $p_{T} > 40 \text{ GeV}$, $|\eta| < 2.4$
 - Veto additional leptons with p_⊤ > 10 GeV
- Jets: $p_T > 30$, $|\eta| < 2.4$
 - Require exactly 2 jets to suppress ttbar → 1 ℓ
- Cut on kinematic variable M_{CT}(b₁,b₂): has endpoint for ttbar but not for signal
- Require M(bb) consistent with Higgs mass

Cut	Signal Requirement		
N(leptons)	= 1		
N(jets)	= 2		
N(b-tags)	= 2		
$M_{bar{b}}$	∈[90,150] GeV		
M_T	$> 100~{ m GeV}$		
M_{CT}	> 160 GeV		
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 200,300,400(,500) GeV		

As in 3 lepton analyses, sensitivity comes in the tail of MET

Sample	$E_{\rm T}^{\rm miss} > 200{ m GeV}$	$E_{\rm T}^{\rm miss} > 300{\rm GeV}$	$E_{\mathrm{T}}^{\mathrm{miss}} > 400\mathrm{GeV}$	$E_{\rm T}^{\rm miss} > 500{\rm GeV}$
tt	1000 ± 260	261 ± 130	17 ± 13	0.5 ± 0.2
V + jets	14 ± 4	1.2 ± 0.3	0.1 ± 0.1	0.0 ± 0.0
single top	291 ± 38	66 ± 11	13 ± 4	2.5 ± 0.8
diboson	87 ± 16	24 ± 5	8.4 ± 2.0	4.4 ± 1.4
Other SM	14 ± 5	2.7 ± 0.6	0.6 ± 0.1	0.1 ± 0.0
Total SM	1410 ± 260	354 ± 130	39 ± 14	7.5 ± 1.6
WH signal (200,1)	1340 ± 140	220 ± 57	73 ± 33	29 ± 21
WH signal (500,1)	605 ± 18	367 ± 14	154 ± 9	40 ± 5
WH signal (900,1)	60 ± 1	51 ± 1	38 ± 1	24 ± 1
Natural Model 2	276 ± 4	150 ± 3	46 ± 2	11 ± 1

Discovery reach extends to 950 GeV with 3000/fb

Discussion on later slide

Several theoretical and experimental assumptions enter these results

Theory:

Simplified Models assume 100% branching ratio to Z or h.
 What if both decays are present?

Experiment:

- How would these results look if the detectors are not upgraded for HL-LHC?
- Similarly, how would they look if the performance estimates are too optimistic?
- Sometimes systematic uncertainties are assumed based on improving the 8 TeV analyses. What if these are optimistic?

With 50% branching to Z/h, combining searches gives good sensitivity

An aged (or reduced performance) detector degrades sensitivity

- Based on full simulation, emulated "aged" detector with:
 - 16% worse e/μ efficiency, 33% worse b-tagging efficiency
 - 40 GeV worse MET resolution → impacts M_T

Larger systematic uncertainties reduce potential discovery reach

- CMS 1²b search: total background uncertainty of 25% at 8
 TeV, dominated by control sample size
 - Assumed this can be reduced to 12.5% for results shown
- With 25% uncertainty, discovery reach decreases from 950 GeV to less than 900 GeV
- Exclusion limits not very sensitive to background uncertainty

Sample	$E_{\rm T}^{\rm miss} > 200{ m GeV}$	$E_{\rm T}^{\rm miss} > 300{\rm GeV}$	$E_{\rm T}^{\rm miss} > 400{ m GeV}$	$E_{\rm T}^{\rm miss} > 500{\rm GeV}$		
		25% Background Uncertainty				
WH signal (200,1)	2.8	1.9	4.3	5.5		
WH signal (500,1)	1.4	3.0	7.6	6.9		
WH signal (900,1)	-	0.4	2.5	4.7		
Natural Model 2	0.6	1.3	2.9	2.4		
		12.5% Background Uncertainty				
WH signal (200,1)	5.8	3.8	6.7	6.8		
WH signal (500,1)	2.9	5.9	12	8.6		
WH signal (900,1)	-	0.9	3.9	5.8		
Natural Model 2	1.4	2.7	4.7	3.0		

Additional channels were used at 8 TeV to improve sensitivity

3 ℓ : W($\ell \nu$)Z($\ell \ell$)

OS 2ℓ2j: W(jj)Z(ℓℓ)

1 ℓ **2b**: W($\ell \nu$)h(bb)

1 ℓ **2** γ : W(ℓ ν)h($\gamma\gamma$)

SS 2 ℓ : W($\ell^{\pm}\nu$)h, h \rightarrow W($\ell^{\pm}\nu$)W(jj)

≥3*ℓ* : W(*ℓ*ν)h(WW,ττ,ZZ)

Conclusions

- 8 TeV searches have only begun to probe electroweak SUSY production, with limits extending to 270-420 GeV for $\chi^{\pm}\chi^{0}$
 - Limits for higher masses exist, but assuming light sleptons
- HL-LHC and 3000/fb extends discovery reach substantially beyond 300/fb
 - For WZ+MET, ~300 GeV further reach moving to 3000/fb
 - For Wh+MET, discovery potential up to 950 GeV with 3000/fb
 - Almost no discovery potential at 300/fb in these studies
- Many assumptions enter these projections
 - Excellent performance and control of systematic uncertainties will be needed to maximize the discovery potential at HL-LHC

Bonus Slides

Parameterized simulations are used for these studies

- Also 3000/fb is a lot of events to generate → strategy needed
 - At 14 TeV, ttbar xsec is ~1nb → 3 billion events
 - Focus on kinematic tails instead of bulk

ATLAS:

- Uses parameterized simulation tuned based on full simulation
- Generates events with a gen-level MET cut, 50 or 120 GeV

• <u>CMS</u>:

- Uses Delphes parameterized simulation with a tune based on full simulation
- Generates events in bins of S_T (scalar sum of p_T for all stable particles)

Branching ratio impact for CMS WH+MET search

A natural model with W+h/Z+MET

