Searches for Exotic Resonances and Decays at the HL-LHC: Experimental Prospects

Chris Pollard

University of Glasgow for CMS and ATLAS

2015 05 12

Introduction I

Run I was successful in that we searched over a wide range of final states, exluding parameter space on a huge number of BSM models.

Introduction II

Run II has more in store:

- ▶ 8 TeV \rightarrow 14 TeV: higher high-mass cross sections
- ► More luminosity
- Better reconstruction and analysis techniques *
- ► More and better models...*
- * no pressure.

Introduction III

Run II has more in store...but not so fast!

- ▶ How much does even more luminosity buy us?
- Obviously helpful for measurements and rare process discovery.
- ▶ How much will we push out mass limits?
- ▶ Is this the correct metric?
- ▶ Will we find something in the first 300fb⁻¹?

- Common Issues
- Dijet resonances
- Dilepton resonances
- $t\bar{t}$ resonances
- Single-lepton searches

Common issues

"What will we gain from more luminosity" is not a trivial question to answer. There are many common issues that we need to keep in mind when trying to estimate what we can see with $3000 \, \mathrm{fb}^{-1}$:

- What will our detectors look like?
- ► How do we model their performance?
- ► How well will we be able to identify and reconstruct objects at very high-p_T?
 - ▶ *b*-jets
 - top quarks (hadronic and leptonic)
 - H,W,Z bosons
 - etc.
- ▶ Do we have any handle on what our systematic uncertainties will be?
- Pileup.

Dijet resonances

- Search for new resonances decaying to two partons
- Generally highest mass reach searches at the LHC
- Basic approach: fit data to smooth function; search for bumps
- Dominant systematic: jet energy scale

Going to spend a little extra time on this final state because it's a good example.

Dijet resonances: 14 TeV

- Recent studies show expected sensitivity at 14 TeV with integrated luminosity
- Two signal models consistent with 8 TeV searches: excited quarks (q*) and quantum black holes (QBH)
- ▶ anti- k_t R = 0.4 jets
- Signal predictions injected into m_{jj} spectrum to predict discovery potential
- ▶ 8 TeV limits: ~4 TeV q*, ~6 TeV QBH

ATL-PHYS-PUB-2015-004

Dijet resonances: injecting signal

mass and p-value of the most significant bump with injected 10 TeV QBH signal as a function of integrated luminosity

Dijet discovery luminosities at 14 TeV

This process is iterated—approximately exponential dependence of 5σ discovery luminosity on m_X .

ATL-PHYS-PUB-2015-004

Dijet limits at 14 TeV

- Run I limits superseded very quickly; it's difficult to push out mass limits beyond a certain point.
- Continuing to push down cross section limits and discovery potential (previous slide) also important.

integrated	m _{q*} [TeV]	m _{QBH} [TeV]		
luminosity [fb ⁻¹]	•			
0.1	4.0	8.2		
1	5.0	8.9		
5	5.9	9.2		
25	6.6	9.7		
300	7.4	10.0		
3000	8.0	10.1		

Dilepton resonances: 14 TeV

- Another search with high mass reach
- Only one type of reconstructed object (two channels)
- Z/γ^* the dominant background.
- ee mass resolution gets better with resonance mass.
- m_{μμ} resolution deteriorates, but somewhat made up for by higher efficiency.

Dilepton resonances: 14 TeV

Projected limits:

model	$300{\rm fb^{-1}}$	$1000{\rm fb^{-1}}$	$3000{\rm fb^{-1}}$
$Z'_{SSM} \rightarrow ee$	6.5	7.2	7.8
$Z'_{SSM} \to \mu\mu$	6.4	7.1	7.6

(current limits: \sim 3 TeV)

- ► 1-1.5 TeV increase in exclusion reach with 3000fb⁻¹ over 300fb⁻¹
- Similar improvement in discovery reach

CMS-NOTE-2013-002

$Z' \rightarrow ee$: telling the difference

If we do see an excess in the m_{ee} spectrum, how well can we characterize it?

 $300 {\rm fb}^{-1} \rightarrow 3000 {\rm fb}^{-1}$: separation between spin-0 and spin-1 resonances

14 / 22

$Z' \rightarrow ee$: telling the difference

 $A_{\rm FB}$ for two spin-1 Z' bosons

Sensitivity to differences between $G_{\rm RS}$ and other dilepton resonances

$t\bar{t}$ resonances: 14 TeV

- ▶ tt̄ resonances: proxy for searches with complicated final states
- ▶ ℓ+jets selection:
 - ▶ One lepton
 - $ightharpoonup E_{\mathrm{T}}^{miss} > 50 \; \mathrm{GeV}$
 - ▶ One anti- k_t 0.4 jet
 - One anti- k_t 1.0 jet with $m_{\rm jet} > 120$ GeV
- ► Two signal benchmarks: narrow Z', wide Randall-Sundrum Kaluza-Klein gluon

$t\bar{t}$ resonances: 14 TeV

model	$300{\rm fb^{-1}}$	$1000{\rm fb^{-1}}$	$3000{\rm fb^{-1}}$
g_{KK}	4.3 (4.0)	5.6 (4.9)	6.7 (5.6)
Z'_{topcolor}	3.3 (1.8)	4.5 (2.6)	5.5 (3.2)

 ℓ +jets (dilepton) channel current limits: ~2 TeV

- ▶ 2+ TeV increase in mass reach with 3000fb^{-1} over 300fb^{-1}
- ▶ No systematic uncertainties are included in the limits.

$W' \rightarrow e\nu$: 14 TeV

- Search for an excess in the $m_{T,e\nu}$ spectrum due to a new resonance
- Only electron channel shown here (much better m_T resolution than μ channel).
- \rightarrow W $\rightarrow e\nu$ the dominant background.

Non-resonant $e\nu$ production

- Search for a non-resonant excess in the $m_{T,e\nu}$ spectrum due to a new dark particle or contact interaction
- W→ eν still the dominant background.
- $\xi = +1, 0, -1 \rightarrow \text{negative, zero,}$ positive interference

Dark matter exclusion reach

CMS

With $3000 {\rm fb}^{-1}$ we can push into the region that is difficult to exclude with direct searches due to the ν background. (simplified mode)

Distinguishing $e + E_{\rm T}^{\it miss}$ signals

If we do see an excess in the $m_{T.e\nu}$ spectrum, how well can we characterize it it?

Summary

- ► The HL-LHC isn't going to push out mass limits as quickly as a higher-energy collider. . .
- ... but a lot can still be gained.
- Models with smaller cross sections can be better probed with more luminosity...
- ...although to predict our sensitivity we probably need at least a vague idea of systematic uncertainties.
- ▶ It's not clear how well we will reconstruct very high-*p*_T objects, e.g. leptons near jets, high-*p*_T substructure, high-*p*_T *b*-jets.
- ▶ We have an idea of our mass reach for a few key searches with 3000fb⁻¹.
- ▶ We are beginning to understand how well we could characterize new physics.
- There's still a lot to do. . .