Dark Matter Simplified models

Alessandro Vichi

Physics at the High-Luminosity LHC

May 12, 2015

EFT not an option..

- EFT are a powerful and general tool, but must used cum grano salis
- At LEP and Teveatron the use of EFT was perfectly legitimate
- At LHC8, and even more at LHC14, the regime of validity of EFT is shrinking
- Quantitatively well illustrated by the quantity R_Λ: the ratio of the cross section obtained in the EFT with the requirement Q_{tr} < Λ over the total cross section obtained in the EFT. It gives a measure of the fraction of events with momentum transfer lower than the EFT cutoff scale: R_Λ < 1 signals the failure of EFT description.</p>
- EX: $D5 = \bar{\chi} \gamma_{\mu} \chi \bar{q} \gamma^{\mu} q$

[G.Busoni, A.De Simone, J.Gramling, E.Morgante, A.Riotto]

Dark Matter at colliders: what to look for?

- Dark matter: particle stable on collider time scales
- ► If dark matter is the lightest state odd under an (approximate) Z₂ symmetry it will pair produced at collider
- Leading signal: $pp \rightarrow MET$

- Most common strategy is to dress the leading process with bosons and look for mono-X (X: jet, Z, W, γ, Higgs)
- This not necessarily the best strategy: for a given simplified model the search for the mediator is complementary and sometimes more constraining

EX: t-channel scalar mediator (squark like) + fermion DM Dijets+MET are more constraining than mono-jet or any other mono-X search ex: [M. Papucci, AV, K. Zurek]

Vector s-channel mediator: Leptophobic Z'

$$\mathcal{L} \supset g_q Z'_\mu \sum_{i=1,2} \left(\bar{\mathcal{Q}}_L^i \gamma^\mu \mathcal{Q}_L^i + \bar{u}_R^i \gamma^\mu u_R^i + \bar{d}_R^i \gamma^\mu d_R^i \right) + g_{DM} Z'_\mu \bar{\chi} \gamma^\mu \chi + \mu_{Z'} h Z'_\mu Z'^\mu.$$

- $m_{DM} > m_{Z'}/2$: poor sensitivity at 8 TeV
- $m_{DM} \leq m_{Z'}/2$: Jets+MET (\equiv monojet) win

[S.P.Liew, M. Papucci, AV, K. Zurek]

Vector s-channel mediator: Leptophobic Z'

$$\mathcal{L} \supset g_q Z'_\mu \sum_{i=1,2} \left(\bar{\mathcal{Q}}_L^i \gamma^\mu \mathcal{Q}_L^i + \bar{u}_R^i \gamma^\mu u_R^i + \bar{d}_R^i \gamma^\mu d_R^i \right) + g_{DM} Z'_\mu \bar{\chi} \gamma^\mu \chi + \mu_{Z'} h Z'_\mu Z'^\mu.$$

► What about HL-LHC?

[O.Buchmueller, M.J. Dolan, S.A. Malik, C.McCabe]

- ► So far only mono-jet studies have been performed: sensible increase in reach for $m_{DM} \le m_{Z'}/2$. Wish list:
 - ► ATLAS/CMS reinterpretation of dijet resonance search and angular distribution search as limits on g_q

Susy-like simplified models: squarks+DM

$$\mathcal{L} \supset g_{DM} \sum_{i=1,2} \left(\widetilde{\mathcal{Q}}_L^i \overline{\mathcal{Q}}_L^i + \widetilde{u}_R^i \overline{u}_R^i + \widetilde{d}_R^i \overline{d}_R^i \right) \chi + \text{mass terms} + h.c.$$

 model well studied by susy searches: jets+MET are the most constraining search in the bulk of parameter space

- Projections show poor sensitivity in the compressed region
- mono-X will help in the compressed region

Mono-Z

- When Z bosons are emitted from the initial state the process is not expected to have sizeable cross sections.
- ► Z boson radiated from final (or internal) states can have sizeable signal

- ▶ In a squarks+DM model, generically this analysis still gives negligible limits w.r.t. a jets+MET search
- When $m_{SO} \simeq m_{DM}$, cross section enhanced by the process:

 $gg \longrightarrow \widetilde{q}\widetilde{q}^{\dagger}Z \longrightarrow 2(\text{soft})j + Z + \text{MET}$ mono-Z final state

HL-LHC projections shows exclusion limits up to $m_{SQ} \simeq 500 GeV$, $(m_{SQ} - m_{DM} = 10 GeV)$. [S.P.Liew, M. Papucci, AV, K. Zurek]

Wish list:

Study the impact of an hybrid analysis Z+MET+(not so soft)jets

Alessandro Vichi (CERN)

Susy-like simplified models: sbottoms+DM

Similar to previous slides:

model well studied by susy searches: jets+MET are the most constraining search in the bulk of parameter space

- Projections show poor sensitivity in the compressed region
- mono-jet and mono-Z will help in the compressed region
- Solution can have sizeable coupling to the Higgs without introducing flavour issues $(g_H \sim m_b)$
- HL-LHC starts being sensitive to mono-Higgs signals, but still not competitive using current analysis

Mono-Higgs

(Not so) Simplified model where mono-Higgs can play a fundamental role: [A.Berlin, T.Lin, L.T.Wang]

- 2 Higgs doublet model
- Heavy Z' coupled to quarks and higgs sector only
- ▶ DM coupled to pseudo-scalar A₀

Mono-Higgs

- At present no dedicated mono-Higgs analysis exists.
- Current limits are obtained recasting the limits on the signal strength:

$$\mu = \frac{\sigma(pp \to hZ(Z \to \nu n\bar{u}))}{\sigma_{SM}}$$

Not binned on missing energy or Higgs p_T

Wish list:

Optimise a mono-Higgs analysis for different simplified models

Neutralinos

For the first time we will be sensitive to Simplified Models where the Dark Matter is the only light state.

- Can be though as a limit of MSSM
- Also, in the framework of minimal dark matter, one introduces one electroweak multiplet at the time and uses the neutral component as dark matter candidate
- Explaining the relic abundance fixes the DM mass
- ► Higgsino, Wino are most considered examples, but other can be studied

[M.Low, L.T.Wang]

Disappearing tracks

- A standard and agnostic method to look for neutralinos is the use of mono-X (mostly mono-jet) searches.
- ► Starting from HL-LHC this is not the most effective technique
- In the minimal scenario where only one multiplet is light, charged and neutral components are split by loop effects:

 $m_{\chi^{\pm}} - m_{\chi^0} \simeq 166 \text{ MeV} (355 \text{MeV})$ for a Wino (Higgsino)

The small splitting results is a macroscopic lifetime of the chargino, which then can leave a trace in the detector before decaying: disappearing tracks are the smoking gun of this Simplified Model.

[M.Low, L.T.Wang]

- Soft leptons and VBF not as constraining.
- ► To saturate the relic abundance $m_W \sim 3.1$ TeV, $m_H \sim 1$ TeV: HL-LHC can't close the parameter space but it can start carving it out.

Alessandro Vichi (CERN)

Conclusions

- ► HL-LHC will definitively improve the reach of DM searches
- Complementarity of different channels will be important, since they are sensitive to different combination of simplified models couplings
- Optimise the searches based on Simplified models will be a key aspect

In this talk I only focused on a small subset of simplified models. A more complete list of Simplified models for mono-X (other than mono-jet) could be:

Model	mono-Higgs	mono-Z	Model	mono-Higgs	mono-Z
	q $Z; Z'_{Z}; Z' \qquad \chi; \phi$			q 2' x' x	$q \xrightarrow{\chi} \chi \chi$
s-channel vector	$q = \chi; \phi$		Inelastic DM	q h	q Z
		\overline{q} Z K	Squark/shottom	q q q h h χ	
s-channel scalar	q ^γ ¹ χ	9 X	Squark/sbouoin		
2HDM	q q $Z; Z_{h;S}$ $\chi; \phi$ $\chi; \phi$		Inelastic squark	$q = \frac{\chi}{\hat{q}} + \frac{\chi}{\hat{h}} + \frac{\chi}{\hat{h}}$	q χ χ χ χ

[[]S.P.Liew, M. Papucci, AV, K. Zurek]