

Y production in p-Pb and Pb-Pb collisions with ALICE at the LHC

Javier Castillo for the ALICE Collaboration

ALT CE

Outline

- Introduction
- Y production in pp collisions
 - Testing production models
- Y suppression in Pb-Pb collisions
 - Probing the QGP
- Y production in p-Pb collisions
 - Addressing cold nuclear matter effects
- Summary

ALT CF

Quark Gluon Plasma

Main goal of ALICE: Study the properties of the deconfined state of nuclear matter, the Quark Gluon Plasma (QGP)

Ultra relativistic heavy ion collisions, such as Pb-Pb at the LHC, provide the extreme conditions of energy density (temperature) necessary to form the QGP

Studies of the created medium

Studies of the created medium

- ➤ Bulk properties
 - How does the medium behave

Studies of the created medium

- ➤ Bulk properties
 - How does the medium behave

- Probing the medium
 - How does a probe react to the medium

Quarkonia as probes of the QGP

- Quarkonia are important probes of QCD matter
 - Heavy-quark pair production is a perturbative process
 - Their binding is inherently non-perturbative
 - Produced early in the collision
 - Sensitive to the properties of the surrounding medium

Quarkonia and the QGP

- Quarkonium suppression
 - In a QGP, a Q-Qbar pair could be colour-screened by the surrounding coloured quarks and gluons [PLB 178 (1986) 416]
 - Quarkonia should be suppressed by the QGP
 - The suppression increases with the QGP temperature

ALICE

Quarkonia and the QGP

- Quarkonium suppression
 - In a QGP, a Q-Qbar pair could be colour-screened by the surround coloured quarks and gluons [PLB 178 (1986) 416]
 - Quarkonia should be suppressed by the QGP
 - The suppression increases with the QGP temperature

- Sequential suppression
 - The survival probability of the quarkonia depends on its binding energy (or radius) [ZPhysC 51 (1991) 209]
 - Different quarkonium states have different survival probabilities

- Could provide an estimate of the QGP temperature

Quarkonia and the QGP

- Quarkonium regeneration
 - If the initial number of Q-Qbar pairs is large
 - If heavy quarks thermalise in the QGP
 - Then quarkonia can form at the phase boundary by statistical hadronization [PLB 490 (2000) 196] or during the QGP evolution [PRC 63 (2001) 054905] by heavy quark recombination

► time

ALICE

Quarkonia and the QGP

- Quarkonium regeneration
 - If the initial number of Q-Qbar pairs is large
 - If heavy quarks thermalise in the QGP
 - Then quarkonia can form at the phase boundary by statistical hadronization [PLB 490 (2000) 196] or during the QGP evolution [PRC 63 (2001) 054905] by heavy quark recombination

▶ time

Quarkonia and the QGP

- Quarkonium regeneration
 - If the initial number of Q-Qbar pairs is large
 - If heavy quarks thermalise in the QGP
 - Then quarkonia can form at the phase boundary by statistical hadronization [PLB 490 (2000) 196] or during the QGP evolution [PRC 63 (2001) 054905] by heavy quark recombination

► time

ALICE

Quarkonia and the QGP

- Quarkonium regeneration
 - If the initial number of Q-Qbar pairs is large
 - If heavy quarks thermalise in the QGP
 - Then quarkonia can form at the phase boundary by statistical hadronization [PLB 490 (2000) 196] or during the QGP evolution [PRC 63 (2001) 054905] by heavy quark recombination

► time

Will compete with quarkonium suppression, possibly compensate or even exceed it

Cold Nuclear Matter (CNM) effects

 In Pb-Pb collisions quarkonium production is also affected by Cold Nuclear Matter (CNM) effects

- Modification of the Parton Distribution Functions in the nuclei with respect to

free nucleons

Has been parametrised over the past years

 Significant uncertainties and spread between different approaches

- Energy loss of partons producing the heavy quark pair
 - Latest developments consider coherent parton energy loss
- Nuclear absorption (heavy-quark pair break-up)
 - Expected to be negligible at LHC energies
- p-A collisions used to study CNM effects in the absence of a hot medium

Quarkonia and the QGP - in short

If Q-Qbar pairs are abundantly produced and thermalize with the medium, recombination could compensate or exceed colour-screening suppression

"Cold Nuclear Matter" effects could alter the quarkonium yields: nuclear absorption, gluon shadowing, ...

Sequential quarkonium suppression by colour-screening could provide a measurement of the QGP initial temperature

OLT CE

Bottomonia

- Quarkonium production in heavy-ion collisions are at least affected by
 - Suppression in the QGP
 - Regeneration in the QGP or at phase boundary
 - CNM effects
 - Feed-down from heavy-flavour hadrons decay
- The study of both Bottomonium and Charmonium families in both p-Pb and Pb-Pb collisions help to disentangle the different mechanisms at play
- Bottomonia with respect to Charmonia
 - Less sensitive to regeneration
 - At LHC, about 100 c-cbar pairs and about 5 b-bbar pairs in central Pb-Pb collisions
 - Do not suffer from feed-down of heavy-flavour hadrons decays
 - Probe different kinematic (Bjorken-x) range

OLT CE

Bottomonia

- Quarkonium production in heavy-ion collisions are at least affected by
 - Suppression in the QGP
 - Regeneration in the QGP or at phase boundary
 - CNM effects
 - Feed-down from heavy-flavour hadrons decay
- The study of both Bottomonia and Charmonia in both p-Pb and Pb-Pb collisions help to disentangle the different mechanisms at play
- Bottomonia with respect to Charmonia
 - Less sensitive to regeneration
 - At LHC, about 100 c-cbar pairs and about 5 b-bbar pairs in central Pb-Pb collisions
 - Do not suffer from feed-down of heavy-flavour hadrons decays
 - Probe different kinematic (Bjorken-x) range
- Theoretically, it is unclear that the same suppression formalism developed for charmonia can be extended to bottomonia

ALICE

ALICE

Y reconstruction in ALICE

Muon spectrometer (-4.0 < η_{lab} < -2.5)

Quarkonia

- $\bullet \rightarrow \mu^+\mu^-$
 - down to $p_T = 0$

- Minimum Bias trigger: VZERO and SPD
- Di-muon trigger: opposite-sign muon pair candidate (single muon track $p_T \gtrsim 0.5$ or 1 GeV/c, depending on data sample) in coincidence with MB trigger
- Vertex determination: SPD
- Centrality in Pb-Pb: Glauber fit to VZERO signal amplitude

Data sets

System	pp	Pb-Pb	Pb-p	p-Pb
√snn	7 TeV	2.76 TeV	5.02 TeV	5.02 TeV
Int. Luminosity	1.35 pb ⁻¹	69 μb ⁻¹	5.8 nb ⁻¹	5.0 nb ⁻¹

- Absorbers (front, conical, filter)
- Dipole magnet
- Tracking chambers
- Trigger system

Y analyses

- Build the invariant mass distribution of opposite sign muon tracks
 - matching with tracklets in the muon trigger system
 - removes hadrons escaping the front absorber and low momentum muons (π & K decays)
 - $-4 < \eta_{\mu} < -2.5$
 - $-17.6 < R_{abs} < 89$ cm ($R_{abs} = track radial position at the absorber end)$
 - $-2.5 < y^{\mu\mu}_{lab} < 4$

- Signal extraction
 - Fit to the invariant mass distribution with a combination of signal and background shapes
 - Signal: extended Crystal-Ball function
 - Gaussian core with two independent power-law tails at low and high mass
 - Background: double exponential, double power-law, variable width Gaussian

Y Acceptance x Efficiency

- Acceptance x Efficiency
 - Use either embedding (Pb-Pb) or pure simulations (pp and p-Pb) with timedependent status of the spectrometer

 Slight drop of efficiency from peripheral to central collisions due to increase of detector occupancy

pp collisions at $\sqrt{s} = 7 \text{ TeV}$

pp collisions at 7 TeV

EPJC 74 (2014) 2974

- Y(1S) and Y(2S) cross section
- $\Upsilon(1S)$ cross section vs p_T and rapidity
- Good agreement ALICE LHCb for both Y(1S) and Y(2S)
- Fraction of $\Upsilon(1S)$ from $\Upsilon(2S)$ decays is $-f^{\Upsilon(1S)} = 0.090 \pm 0.027 \pm 0.005$

ALI-PUB-72846

Model comparison

EPJC 74 (2014) 2974

• Color Singlet Model [NPA470 (2013) 910]

10

 $p_{_{\rm T}}$ (GeV/c)

- At Leading Order (LO)
 - Qualitatively describes the data at low p_T and the rapidity dependence (not shown)
 - Underestimates the data at high p_T
- Addition of the leading-p_T NNLO contributions
 - Helps to improve the situation at high p_T

- Non-Relativistic QCD [PRD84 (2011) 114001]
 - Matrix elements fixed to data sets from Tevatron, RHIC and LHC
 - Good agreement at high p_T
- Similar conclusions reached with other quarkonia (but η_c).
- No consensus yet on quarkonium production mechanism in pp collisions

Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Pb-Pb collisions

PLB 738 (2014) 361

ALICE PbPb @ 2.76 TeV

• Y(1S) production in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

 Suppression of Y(1S) production in Pb-Pb collisions can be measured by the nuclear modification factor

$$R_{AA} = rac{Y^{\Upsilon}}{\langle T_{AA} \rangle imes \sigma_{
m pp}^{\Upsilon}}$$

 To calculate the nuclear modification factor we now use the Y(1S) cross section measured by LHCb in pp collisions at 2.76 TeV [EPJC74 2835 (2014)]

Inclusive Y(1S) nuclear modification factor

ICE PbPb @ 2.76 TeV

PLB 738 (2014) 361

R_{AA} of inclusive Y(1S) in Pb-Pb collisions at √s_{NN} = 2.76 TeV

Uncertainties:

- Bars: Statistical
- Open boxes: Uncorrelated systematic
- Full box: Correlated systematic

Strong suppression of inclusive Y(1S)

- Centrality 0% 90%; $p_T > 0$; 2.5 < y < 4.0:
 - $R_{AA} = 0.304 \pm 0.047(stat) \pm 0.042(syst)$
- Stronger suppression in more central collisions

Inclusive Y(1S) nuclear modification factor

PLB 738 (2014) 361

R_{AA} of inclusive Y(1S) in Pb-Pb collisions at √s_{NN} = 2.76 TeV

Uncertainties:

- Bars: Statistical
- Open boxes: Uncorrelated systematic
- Full box: Correlated systematic

- Strong suppression of inclusive Y(1S)
 - Centrality 0% 90%; $p_T > 0$; 2.5 < y < 4.0:
 - $R_{AA} = 0.304 \pm 0.047(stat) \pm 0.042(syst)$
 - Stronger suppression in more central collisions
 - Contribution from feed-down?

ALI-PUB-89228

• At most 30% suppression. And the rest?

Comparison with mid-rapidity measurement

ALICE PbPb @ 2.76 TeV

PLB 738 (2014) 361

 Mid-rapidity measurement from CMS Collaboration [PRL 109 (2012) 222301]

- Stronger suppression at forward rapidity than at mid rapidity
 - Unexpected in a scenario with only suppression by the QGP since a smaller or similar energy density is expected at forward than at mid rapidity
 - Role of regeneration?
 - Role of CNM effetcs?

Comparison with models – Dynamical

ALICE PbPb @ 2.76 TeV

PLB 738 (2014) 361

• R_{AA} of inclusive Y(1S) in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

- M. Strickland, [arXiv:1207.5327]
 - Thermal suppression of bottomonium states
 - Anisotropic hydro model
 - Two temperature rapidity profiles: Boost invariant or Gaussian
 - Three tested shear viscosities
 - Feed down from higher mass states included
 - No CNM effects included
 - No regeneration included

In all cases the model underestimates the measured $\Upsilon(1S)$ suppression at forward rapidity

Comparison with models – Transport

PLB 738 (2014) 361

• R_{AA} of inclusive Y(1S) in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

- A. Emerick et al., [EPJ A48 (2012) 72]
 - Transport model
 - Suppression of Y resonances by the QGP
 - Mainly of the higher mass states
 - Small regeneration component included
 - Feed down from higher mass states included
 - CNM included via an "effective" $\sigma_{ABS} = 0-2$ mb

Model does not reproduce the strong rapidity dependence of the R_{AA} and underestimates the $\Upsilon(1S)$ suppression at forward rapidity

- Stronger suppression of direct Y(1S)?
- Role of regeneration?
- Role of CNM effects?

Comparison with models – Transport II

ALICE PbPb @ 2.76 TeV

ALICE-PUBLIC-2014-001

• R_{AA} of inclusive Y(1S) in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

- K. Zhou et al., [PRC89 (2014) 054911 and private communication]
 - Transport model
 - Suppression of resonances by the QGP
 - Mainly the higher mass states
 - Small regeneration component included
 - Feed down from higher mass states included
 - CNM included: EKS98

Model does not reproduce the strong rapidity dependence of the R_{AA} and underestimates the $\Upsilon(1S)$ suppression at forward rapidity

- Suppression of direct Y(1S)?
- Role of regeneration?
- Role of CNM effects?

Summary Pb-Pb

- Y(1S) is strongly suppressed at forward rapidity in Pb-Pb collisions
 - Suppression increases with increasing centrality of the collision
 - Centrality 0% 90%; $p_T > 0$; 2.5 < y < 4.0:
 - $R_{AA} = 0.304 \pm 0.047(stat) \pm 0.042(syst)$
- Y(1S) is more suppressed at forward rapidity than at mid-rapidity
 - Suppression by the QGP may not be the only mechanism at play?
- Available theoretical models
 - do not reproduce the strong rapidity dependence of the $\Upsilon(1S)$ R_{AA}
 - and underestimate the measured suppression at forward rapidity
- Feed-down from higher mass states can only account for 30% of Y(1S) suppression

p-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

p-Pb and Pb-p collisions

PLB 740 (2015) 105

• Inclusive $\Upsilon(1S)$ production in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Two configurations

 $2.03 < y_{cms} < 3.53$ (forward)

Production cross section

11

PLB 740 (2015) 105

E pPb @ 5.02 TeV

Rapidity integrated cross sections

- $-\sigma_{Y(1S)}(-4.46 < y_{cms} < -2.96) = 5.57\pm0.72(stat)\pm0.60(syst) \mu b;$
- $-\sigma_{Y(1S)}(2.03 < y_{cms} < 3.53) = 8.45\pm0.94(stat)\pm0.77(syst) \mu b.$
- $-\sigma_{Y(2S)}(-4.46 < y_{cms} < -2.96) = 1.85\pm0.61(stat)\pm0.32(syst) \mu b$
- $-\sigma_{Y(2S)}(2.03 < y_{cms} < 3.53) = 2.97\pm0.82(stat)\pm0.50(syst) \mu b.$
- Y(2S)-to-Y(1S) cross section ratio
 - $-4.46 < y_{cms} < -2.96$: $0.26 \pm 0.09 \pm 0.04$
 - $-2.03 < y_{cms} < 3.53$: $0.27 \pm 0.08 \pm 0.04$
- Similar values measured in pp collisions by ALICE (2.5 < y < 4.0) and LHCb (2.0 < y < 4.5)
 - ALICE 7 TeV: 0.28 ± 0.08
 - LHCb 2.76 TeV: 0.24 ± 0.03
 - LHCb 7 TeV: 0.25 ± 0.02
 - LHCb 8 TeV: 0.23 ± 0.01

No evidence of different amount of CNM effects on Y(2S) with respect to Y(1S)

• At mid-y CMS measures $[Y(2S)/Y(1S)]_{pPb}/[Y(2S)/Y(1S)]_{pp} = 0.83 \pm 0.05 (stat) \pm 0.05 (syst)$

Forward to Backward ratio

PLB 740 (2015) 105

LICE pPb @ 5.02 TeV

- Ratio of the Forward to Backward yields
 - Pros: No need of pp reference
 - Cons: Rapidity acceptance restricted to common region 2.96 $< |y_{cms}| < 3.53$

- All models are in agreement with our measurement within uncertainties

pp reference @ 5.02 TeV

ALICE-PUBLIC-2014-002

ICE pPb @ 5.02 TeV

- No pp data exist at $\sqrt{s} = 5.02$ TeV!
- Energy interpolation at forward rapidity
 - using LHCb data at 2.76, 7 and 8 TeV
 - and several "reasonable" functional forms
 - but also pQCD FONLL calculation
- Obtained cross-sections
 - $-d\sigma/dy(5.02 \text{ TeV}, Y(1S), 2.0 < y < 3.5) \times BF(\mu^+\mu^-) = 967 \pm 76 \text{ pb},$
 - $-d\sigma/dy(5.02 \text{ TeV}, Y(1S), 3.0 < y < 4.5) \times BF(\mu^+\mu^-) = 513 \pm 58 \text{ pb}.$

Y nuclear modification factor in p-Pb

Inclusive Y(1S) R_{pPb}

PLB 740 (2015) 105

- Bars: Statistical
- Open boxes: Systematic
- Full box: Correlated systematic

Indication of suppression (2.7σ) at forward rapidity

- Assuming a 2→1 production process the tested Bjorken-x ranges are
 - Backward: $3.6 \cdot 10^{-2} < x < 1.6 \cdot 10^{-1}$ (antishadowing region)
 - Forward: $5.5 \cdot 10^{-5} < x < 2.5 \cdot 10^{-4}$ (shadowing region)

Comparison with J/ψ

PLB 740 (2015) 105 JHEP 02 (2014) 073

- Comparison with ALICE J/ψ R_{pPb}
 - Forward: similar suppression
 - Backward: slightly lower ΥR_{pPb} , but compatible within uncertainties

Indication of suppression (2.7σ) at forward rapidity

- Assuming a 2→1 production process the tested Bjorken-x ranges are
 - Backward: $3.6 \cdot 10^{-2} < x < 1.6 \cdot 10^{-1}$ (Υ) and $1.2 \cdot 10^{-2} < x < 5.3 \cdot 10^{-2}$ (J/ψ)
 - Forward: $5.5 \cdot 10^{-5} < x < 2.5 \cdot 10^{-4}$ (Υ) and $1.8 \cdot 10^{-5} < x < 8.1 \cdot 10^{-5}$ (J/ψ)

Comparison with LHCb

ALICE-PUBLIC-2014-002 LHCb-CONF-2014-003

ALICE pPb @ 5.02 TeV

- Comparison with LHCb Y R_{pPb}
 - Both measurements are compatible
 - R_{pPb} systematically higher for LHCb than ALICE

PLB 740 (2015) 105

- Generic 2→2 production model at LO
- EPS09 shadowing parameterization at LO
- Fair agreement with measured R_{pPb}
 - Although slightly overestimates it in the antishadowing region

- Vogt [arXiv:1301.3395]
 - CEM production model at NLO
 - EPS09 shadowing parameterization at NLO
 - Fair agreement with measured R_{pPb} within uncertainties
 - Although slightly overestimates it

R_{pPb} – Model comparisons

PLB 740 (2015) 105

- Arleo et al. [JHEP 1303 (2013) 122]
 - Model including a contribution from coherent parton energy loss
 - With or without shadowing (EPS09)
 - Forward: Better agreement with ELoss and shadowing
 - Backward: Better agreement with ELoss only

Summary – p-Pb

- A suppression of $\Upsilon(1S)$ at forward rapidity (small-x region)
 - Similar R_{pPb} as for J/ψ
- A R_{pPb} consistent with unity at backward rapidity (large-x region)
 - Model comparisons suggest smaller anti-shadowing than assumed
- No indication, within uncertainties, of different CNM effects on Y(2S) with respect to Y(1S)

ALT CF

Back to Pb-Pb

- In Pb-Pb collisions the suppression of the higher mass states will account for at most 30% suppression of Y(1S) (from feed-down)
- CNM effects?
 - Cannot be easily extrapolated from p-Pb to Pb-Pb
 - Rely on model calculations
 - Assuming factorisation of CNM effects (validated in a CEM approach up to NLO), the expected suppression in Pb-Pb from CNM (R_{PbPb}^{CNM}) can be estimated from the measured R_{pPb} as $R_{PbPb}^{CNM}(y) = R_{pPb}(-y) \times R_{pPb}(y)$

ALICE

Summary

- The production of inclusive $\Upsilon(1S)$ and $\Upsilon(2S)$ at forward rapidity has been measured in pp collisions at $\sqrt{s} = 7$ TeV
- The production of inclusive $\Upsilon(1S)$ in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV shows
 - Strong suppression of $\Upsilon(1S)$ at forward rapidity
 - Suppression increases with increasing centrality of the collision
 - Suppression is larger at forward rapidity than at central rapidity
 - Available models do not reproduce the strong rapidity dependence of the R_{AA} and underestimate the measured suppression at forward rapidity
 - Stronger suppression of direct Y(1S)?
 - Role of regeneration?
 - Role of CNM effects?
- The production of inclusive $\Upsilon(1S)$ and $\Upsilon(2S)$ in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV shows
 - A suppression of $\Upsilon(1S)$ at forward rapidity (small-x region)
 - Similar R_{pPb} as for J/ψ
 - $-AR_{pPb}$ consistent with unity at backward rapidity (large-x region)
 - Model comparisons suggest smaller anti-shadowing than assumed
 - No indication, within uncertainties, of different CNM effects on Y(2S) with respect to Y(1S)

ALT CF

Outlook

- More to expect from LHC Run 2
- Pb-Pb at $\sqrt{s_{NN}} = 5 \text{ TeV}$
 - Confirm stronger suppression of Y(1S) at forward rapidity compared to midrapidity
 - Observe stronger suppression of the $\Upsilon(2S)$ than of $\Upsilon(1S)$ also at forward rapidity
 - Good pp reference is important
- p-Pb collisions
 - Provide stronger experimental constraints on CNM effects
 - Establish wether CNM effects on $\Upsilon(2S)$ are stronger than on $\Upsilon(1S)$ also at forward rapidity
 - Good pp reference is important

Back-up

Systematic uncertainties – pp

Source	Ι/ψ (%)	ψ(2S) (%)	Υ(1S) (%)	Υ(2S) (%)
Luminosity	5	5	5	5
Signal extraction	2 (2–15)	8 (7.5–11)	8 (8–13)	9
Input MC parametrization	1.7 (0.1–1.8)	1.7 (0.4-2.4)	2.4 (0.6-4.5)	2.4
Trigger efficiency	3.5 (3-5)	3.5 (3–5)	3	3
Tracking efficiency	6.5 (4.5–11.5)	6.5 (4.5–11.5)	6.5 (5.1–10.5)	6.5
Tracking-trigger matching	1	1	1	1

Systematic uncertainties – p-Pb

Source	Backward rapidity	Forward rapidity
Signal extraction: $\Upsilon(1S)$	5%-6% (II)	4%-6% (II)
Signal extraction: $\Upsilon(2S)$	12% (II)	12% (II)
Input MC parameterization: $\Upsilon(1S)$	2%-5% (II)	4%-6% (II)
Input MC parameterization: $\Upsilon(2S)$	5% (II)	5% (II)
Tracking efficiency	6% (II)	4% (II)
Trigger efficiency	2% (II)	2% (II)
Matching efficiency	1% (II)	1% (II)
$\sigma_{\mathrm{pp}}^{\Upsilon(1S)}$ (interpolation)	11%-13% (II)	7%-12% (II)
\mathscr{L} (correlated)	1.6% (I)	1.6% (I)
\mathscr{L} (uncorrelated)	3.1% (II)	3.4% (II)

Systematic uncertainties – Pb-Pb

Source	Centrality	Rapidity	Integrated
Signal extraction	5-6% (II)	5-10% (II)	5%
Input EMC distributions	4% (I)	5-7% (II)	4%
Tracking efficiency	10% (I)	9-11% (II)	10%
Trigger efficiency	2% (I)	2% (II)	2%
Matching efficiency	1% (I)	1% (II)	1%
$\langle T_{AA} \rangle$	3-4% (II)	3% (I)	3%
$N_{ m MB}$	4% (I)	4% (I)	4%
$\mathrm{BR}_{\Upsilon(1\mathrm{S}) o \mu^+ \mu^-} imes \sigma^\mathrm{pp}_{\Upsilon(1\mathrm{S})}$	4% (I)	4-7% (II) 4% (I)	4%

pp reference @ 2.76 TeV

Approach used for preliminary results

- Energy interpolation at mid-rapidity
 - using CDF@1.8 TeV, D0@1.96 TeV,
 CMS@2.76 TeV, CMS@7 TeV data
 - and several "reasonable" functional forms
 - but also pQCD FONLL calculation
- Rapidity extrapolation
 - Test and select many Pythia tunes using CMS and LHCb data at 7 TeV
 - With selected tunes extrapolate the mid-rapidity point above to forward rapidity

Approach used for the publication

- Use data from LHCb [EPJC74 2835 (2014)]
- pp cross section at 2.76 TeV (2.5<y<4)
 - LHCb measurement: $\sigma[\Upsilon(1S){\to}\mu\mu]{=}0.670{\pm}0.025~(stat.){\pm}0.026~(syst.)$ nb
 - ALICE extrapolation: $\sigma[\Upsilon(1S)\rightarrow\mu\mu]=0.465^{+0.071}_{-0.045}$ (extrap.) ± 0.041 (norm.) nb

Preliminary inclusive Y(1S) RAA

PbPb @ 2.76 TeV

R_{AA} of inclusive Y(1S) in Pb-Pb collisions at √s_{NN} = 2.76 TeV

• Depending on the rapidity interval, the pp reference obtained with the interpolation and extrapolation procedure and the LHCb data [EPJC74 (2014) 2835] differ by 30-35%, which implies a change on the modification factor by 1.3 to 2.2σ .

ALT CF

Motivations

- Quarkonia are important probes of QCD matter
 - Heavy-quark pair production is a perturbative process
 - Their binding is inherently non-perturbative
 - Produced early in the collision
 - Sensitive to the properties of the surrounding medium
- Y in pp collisions
 - Test of production models
 - Reference for Pb-Pb studies
- Y in Pb-Pb collisions
 - Quarkonia could be suppressed in the QGP by colour screening
 - Different binding energies mean that sequential suppression of different quarkonium states is expected
 - Compared to charmonia
 - Regeneration is expected to be smaller
 - No feed-down from open heavy flavours
 - Smaller cold nuclear matter effects are expected
- Y in p-Pb collisions
 - Study Cold Nuclear Matter effects
 - Compared to charmonia
 - Different kinematics range (Bjorken-x) probed

