Results and Prospects of Direct Dark Matter Detection

Goal of Direct Detection Experiments

 Detect new, yet undiscovered particles, which may be responsible for the dark matter in our galaxy. Example: WIMPs = heavy (few GeV - few TeV), color and electrically neutral; in thermal equilibrium with the rest of the particles in the early universe, freeze out when M_W>>T_F

Strategy for WIMP Direct Detection

- Elastic collisions with atomic nuclei
- The recoil energy is:

$$\boldsymbol{E}_{\boldsymbol{R}} = \frac{\left| \boldsymbol{\vec{q}} \right|^2}{2\boldsymbol{m}_N} = \frac{\mu^2 v^2}{\boldsymbol{m}_N} (1 - \cos \theta) \le 50 \ \boldsymbol{keV}$$

• and the expected rate:

Expected Scattering Cross Sections

- A general WIMP candidate: fermion (Dirac or Majorana), boson or scalar particle
- The most general, Lorentz invariant Lagrangian has 4 types of interactions (S, P, V, A)
- In the extreme NR limit relevant for galactic WIMPs (VWIMP ~ 10⁻³c), the interactions leading to WIMP-nuclei elastic scattering are classified as:

scalar interactions (WIMPs couples to nuclear mass; from the scalar and vector part of L)

$$\sigma_{SI} = \frac{m_N^2}{4\pi (m_W + m_N)^2} \left[Zf_p + (A - Z)f_n \right]^2 \qquad \text{f}_{p,n} = \text{effective couplings to p, n}$$

spin-spin interactions (WIMPs couples to nuclear spin J_N, from the axial part of L)

$$\sigma_{SD} = \frac{32}{\pi} G_F^2 \frac{m_W^2 m_N^2}{(m_W + m_N)^2} \frac{J_N + 1}{J_N} \left(a_p \left\langle S_p \right\rangle + a_n \left\langle S_n \right\rangle \right)^2$$

 $\langle S_{p,n} \rangle$ = expectation

values of the spin content of the p, n in the target nucleus

 $a_{p,n}$ = effective couplings to p, n

Expected Interaction Rates

• Integrate over WIMP velocity distribution; in general assumed to be of Maxwell-Boltzmann type, which so far is a pretty good approximation (isothermal halo with ideal WIMP gas):

$$\frac{dR}{dE_R} = \frac{\sigma_0 \rho_0}{2m_\chi \mu^2} F^2(E_R) \int_{v_{min}}^{v_{max}} \frac{f(v)}{v} dv$$
$$f(v) dv = \frac{4v^2}{v_0^3 \sqrt{\pi}} e^{-v^2/v_0^2} d^3 v$$

• with WIMP-nucleon cross sections $< 10^{-7}$ pb, the expected rates are

< 1 event/100kg/day

Expected WIMP Signatures

• WIMP interactions in detector should be:

- nuclear recoils
- single scatters, uniform throughout detector volume
- Spectral shape (exponential, however similar to background)
- **Dependance on materia**l (A², F²(Q), test consistency between different targets)
- Annual flux modulation (~ 3% effect, most events close to threshold)
- Diurnal direction modulation (larger effect, requires low-pressure gas target)

Evidence for annual modulation?

- DAMA/LIBRA at LNGS (0.82 ton x year in Nal); $A = (0.0215 \pm 0.0026) \text{ cpd/kg/keV}$ (8.3 σ CL) \bullet
- Severe tension with other experiments! 2-6 keV 0.1 Residuals (cpd/kg/keV) DAMA/NaI (0.29 ton×yr) ← DAMA/LIBRA (0.53 ton×yr)→ arXiv:0804.2741 0.08 (target mass = 87.3 kg) (target mass = 232.8 kg)0.06 arXiv:0804.2738 0.04 0.02 0 -0.02-0.04-0.06-0.08 -0.1500 1000 1500 2000 2500 3000 3500 4000 4500 Time (day) **Spin-independent** arXiv:0808.3607v1 **Spin-dependent** 10^{0} 10° DAMA $(7\sigma/5\sigma)$ DAMA (70/50) 10^{-1} 10^{3} DAMA (30/90%) DAMA (3*σ*/90%) DAMA ($7\sigma/5\sigma$) 10^{-2} 102 DAMA $(7\sigma/5\sigma)$ with channeling DAMA (30/90%) with channeling DAMA (30/90%) 10^{-3} with channeling 10^{1} $\sigma_{\chi p}$ (pb) $\sigma_{\chi_n}(pb)$ with channeling CRESST I 10" 100 CRESST1 TEXONO TEXONO 10^{-2} 10-1 CoGeNT CoGeNT Super-K 10^{-6} 10^{-2} XENON 10 spin-dependent XENON 10 spin-independent 10^{-3} 10^{-7} CDMS I Si CDMS I Si $(a_n = 0, neutron only)$ CDMS II Ge CDMS II Ge 10-4 10^{-8} 104 10¹ 10^{2} 10° 10^1 10^{2} 10^{3} 10³ M_{WIMP} (GeV) $M_{\rm WIMP}$ (GeV)

Savage, Gelmini, Gondolo, Freese

Laura Baudis, University of Zurich, CHIPP Plenary Meeting, September 9, 2008

Direct WIMP Detection Experiments and Results

Cryogenic Experiments at mk Tomporatures

Advantages: high sensitivity

measuring the full nuclear r

Cryogenic Experiments at mK Temperatures

10 kg array of 33 CaWO₄ detectors; 66 SQUID channel array now cool-down (5 kg)

Run30 Verena/SOS21 25.1 kg days

Laura Baudis, University of Zurich, CHIPP Plenary Meeting, September 9, 2008

- 10 kg (30 modules) of NTD and NbSi Ge detectors in new cryostat
- 100 kg d under analysis
- data taking in progress

180

200

30 Ge (4.75 kg) and Si (1.1) detectors in 5 towers Run123+124: 654 kg d Ge Run 125+126: 740 kg d Ge Run 127: ongoing

Future mK Cryogenic Dark Matter Experiments

- EURECA (European Underground Rare Event Calorimeter Array)
- Joint effort: CRESST, EDELWEISS, ROSEBUD, CERN, Actual lab
- Mass: 100 kg 1 ton, multi-target approach

- SuperCDMS (US/Canada): 3 phases 25 kg 150 kg 1 ton
- 640 g Ge detectors with improved phonon sensors
- 4 prototype detectors built and tested

R&D for SuperCDMS:
1" thick SuperZIPs (0.64 kg)
2 SuperTowers at Soudan
7 SuperTowers at SNOLAB

Lombardi 2007 for LSM

Project of extension

LSM extension

SuperCDMS 25 kg Experiment

Noble Liquids as Dark Matter Detectors

Charge and Light in Noble Liquids

Noble Liquid Detectors: Existing Experiments and Proposed Projects

	Single Phase (liquid only) PSD	Double Phase (liquid and gas) PSD and Charge/Light
Neon (A=20)	miniCLEAN (100 kg) CLEAN (10-100 t)	SIGN (high P Ne gas)
Argon (A=40)	DEAP-I (7 kg) miniCLEAN (100 kg) CLEAN (10-100 t)	ArDM (1 ton) WARP (3.2 kg) WARP (140 kg)
Xenon (A=131)	ZEPLIN I XMASS (100 kg) XMASS (800 kg) XMASS (23 t)	ZEPLIN II + III (31 kg, 8 kg) XENON10 (15 kg), XENON100 (170 kg) LUX (300 kg), XENON1t (3t)

- Single phase: e⁻-ion recombination occurs; singlet/triplet ratio is 10/1 for NR/ER
- Double phase: ionization and scintillation; electrons are drifted in ~ 1kV/cm E-field

• Complementarity between Ar and Xe targets (nuclear mass, spin vs. no spin,...)

The Double-Phase Detector Concept

- Prompt (S1) light signal after interaction in active volume; charge is drifted, extracted into the gas phase and detected either directly with LEMs, or as proportional light (S2)
- Challenge: ultra-pure liquid + high drift field; efficient extraction + detection of e⁻

Two-phase Argon Detectors

ArDM at CERN

WARP at LNGS

3.2 kg LAr operated at LNGS; results from zero events > 55 keVr

140 kg LAr, 41 3" PMTs under construction active LAr shield: ~ 8t, viewed by 300 PMTs

1 t LAr prototype under construction direct electron readout via LEMs (thick macroscopic GEM) S1 with 14 x 8" PMTs

(b) WIMP Exposure of 96.5 kg • day

The ArDM Experiment

ETH Zurich, Switzerland: A. Badertscher, L. Kaufmann, L. Knecht, M. Laffranchi, C.Lazzaro, A. Marchionni, G. Natterer, P. Otiougova, F.Resnati, A. Rubbia (spokesperson), J. Ulbricht. Zurich University, Switzerland: C. Amsler, V. Boccone, A. Dell'Antone S. Horikawa, C. Regenfus, J. Rochet. University of Granada, Spain: A. Bueno, M.C. Carmona-Benitez, J. Lozano, A. Melgarejo, S. Navas-Concha. CIEMAT, Spain: M. Daniel, M. de Prado, L. Romero. Soltan Institute for Nuclear Studies, Poland: P. Mijakowski, P. Przewlocki, E. Rondio. University of Sheffield, England: P.Lightfoot, K.Mavrokoridis, M. Robinson, N. Spooner.

- 1 ton liquid argon TPC/calorimeter, in construction phase at CERN
- Goals: $E_{th} \approx 30$ keV, 3D imaging, event-by-event identification of interaction type
- Background rejection by: topology, localization, ionization density (ratio of ionization/scintillation and time distribution of the scintillation light)
- Expected signal rate: 1 WIMP event/ton/day at 10⁻⁸ pb

The ArDM Experiment: Status at CERN

- Cryostat and liquid purification and recirculation built and tested
- HV generator (Greinacher circuit) to reach \approx 4 kV/cm (V_{tot} = 500 kV) placed in liquid
- Slow Control has been implemented
- Double phase LEMs successfully operated in double phase Ar mode (stable gain of 10⁴); with final LEM charge readout segmented; A/D conversion and DAQ system being developed
- 14 bialkali 8" PMTs (TPB coated) installed at the bottom
- 15 light reflector/shifter foils produced and installed

C.Amsler et al., *"Luminescence quenching of the triplet excimer state by air traces in gaseous argon"* arXiv:0708.2621

Double-sided copper-clad (35 µm layer) G-10 plates

- Precision holes by drilling
- Palladium deposition on Cu (<~ 1 µm layer) to avoid oxidization
- Single LEM Thickness: 1.5 mm
 - Amplification hole diameter = 500 µm
 - Distance between centers of neighboring holes = 800 µn

The ArDM Experiment: Assembly and Plans

- Assembled at CERN: Sept. 2007 May 2008
- First cool down in May 2008 successful, PMTs work well
- To understand light collection: movable source + blue LED installed
- Purity monitoring cell and neutron calibration in progress
- Goals: operate full scale prototype at surface (and evtl. at shallow depth) at CERN
- Consider deep underground operation, for instance at the Canfranc Lab

Two-phase Xenon Detectors

ZEPLIN III at Boulby

8 kg LXe (fiducial) 31 x 2" cm PMTs

analysis of WIMP search run in progress

XENON10 at LNGS

15 kg (5.4 fiducial), 89 2" PMTs

136 kg d (after cuts) of WIMP search data

energy (s1em*1.10), keVee

a total of 30% of WIMP search data unblinded => no events in the signal region

rest (70%) will be unblinded soon

10 events observed, all BG

Results: PRL100, PRL101

The XENON100 Detector

- TPC (total of 170 kg LXe) with active veto (100 kg LXe) installed underground since February 2008
- New cryostat design: PTR and feed-throughs outside the low-background shield
- All (detector/shield) materials were screened for their radio-purity: MC predictions of backgrounds
- Test runs showed that background is at the expected level
- Xe is now being purified to ppt ⁸⁵Kr-levels (T_{1/2} = 10.7 y, β^- 678 keV) with dedicated column at LNGS
- Expect to start WIMP search run in November 2008

XENON100 PMTs

- 242 (Hamamatsu R8520) 1"x1", low radioactivity PMTs; 80 with high QE of 33%
- 98 top: for good fiducial volume cut efficiency
- 80 bottom: for optimal S1 collection efficiency (thus low threshold); 64 in active LXe shield
- PMT gain calibration with blue LEDs; the SPE response is measured

top PMT array (gain equalized to 2x10⁶)

bottom PMT array (gain equalized to 2x10⁶)

Responsibilities of UZH Group in XEN

- PMT testing, calibrations and gain monitoring (+ PMT database)
- Material screening with ultra-low BG HPGe detector at LNGS and ider background materials
- MC geometry (Geant4) and simulations of gamma/alpha/beta and neu
- Calibration (sources/data/MC) with gamma and neutron sources
- Charge and light yield measurements (+ R&D) with small prototype detector at UZH lab
- Various hardware components (inner PTFE TPC structure + PMT holder built at UZH)
- 3 postdocs (A. Ferella, R. Santorelli, E. Tziaeri), 4 graduate students (A. Askin, A. Kish, A. Manalaysay, M. Haffke)

Preliminary Background from XENON100 Data

data (S1 only)

Monte Carlo simulations

Data and Monte Carlo predictions are in good agreement for overall rate

Expected Sensitivity for WIMPs and SUSY Predictions

Expected sensitivity for heavy Majorana Neutrinos

Expected Sensitivity for WIMPs and UED Predictions

Next Step: XENON1t

- Studies in progress for 3 ton (1 ton fiducial) LXe detector
- Possible location: inside LVD SN neutrino detector at LNGS -> active veto for μ-induced neutrons
- Gamma flux inside LVD structure: 10-20 times lower than in main halls (detailed mapping of gamma and neutron background in progress)

Summary

Many different techniques/targets are being employed to search for dark matter particles Experiments are probing the theoretically interesting regions In CH: complementarity between the LAr and LXe WIMP targets! Next generation projects: should reach the $\leq 10^{-10}$ pb level => WIMP (astro)-physics

Theory example: CMSSM (Roszkowski, Ruiz, Trotta) see also: Balz, Baer, Bednyakov, Bottino, Cirelli, Chattopadhyay, Ellis, Fornengo, Giudice, Gondolo, Massiero, Olive, Profumo, Santoso, Spanos, Strumia, Tata,...+ many others

1 event/kg/yr CDMS-II, XENON100, ArDM, COUPP,

CRESST-II, EDELWEISS-II, ZEPLIN-III,...

1 event/t/yr

SuperCDMS1t, WARP1t, ArDM XENON1t, EURECA, XMASS, ...

End

The LUX Experiment

- 300 kg dual phase LXe TPC (100 kg fiducial), with 122 PMTs in large water shield with muon veto
- 50 kg LXe prototype with 4 R8778 PMTs being assembled and tested at CWRU
- full detector to be installed at Homestake Davis Cavern, 4850 ft in 2008-2009 (in 8 m Ø water tank)
- WIMP sensitivity goal: 7×10^{-10} pb after 10 months

The KIMS Experiment

- At the Yangyang Lab in Korea (2000 mwe)
- 4 x 8.7 kg CsI(TI) crystals for 3407 kg yr
- background reduction by PSD
- best SD limit for pure-p

Current status:

- 12 detectors (104.4 kg) installed
- muon veto (liquid scintillator+56 PMTs)
- optimization runs finished (BG ~ 1 dru)
 stable operation in progress
- -> probe the DAMA modulation signal
- -> study annual modulation of 'muon tail ' events

Bubble Chambers as WIMP Detectors

 COUPP: superheated liquid -> detects single bubbles induced by high dE/dx nuclear recoils; advantage: large masses, low costs, SD, SI (I, Br, F, C), high spatial granularity, 'rejection' of ERs 10¹⁰ at 10keV_r; challenge: reduce alpha background

Directional Detector: DRIFT

- Negative ion (CS₂) TPC: 1 m³ 40 Torr CS₂ gas (0.17 kg); 2 mm pitch anode + crossed MWPC grid->2D
- NR discrimination via track morphology in gas (gamma misidentification probability $< 5 \times 10^{-6}$)
- 3D track reconstruction for recoil direction: find head-tail of recoil based on dE/dx
- DRIFT IIa operated at Boulby in 2005: background from Rn emanation of detector components (recoiling nuclei from alpha-decays on cathode wires); 6 kd-d of data being analyzed

New measurements of the Light Yield in LXe

- Columbia + Zurich: at RaRAF (Nevis Labs), 1 MeV n-beam
- Detector: XeCube, 6 R8520 PMTs, 2.5 cm³ LXe, zero field
- New experiment for charge/light under preparation at UZH (using D-D neutron generator)

Publication to be submitted to PRD

Reminder: Backgrounds in XENON10

- Dominated by contribution from detector materials:
- steel (~ 180 kg, ⁶⁰Co), PMTs (89 R8520, U/Th/K/Co) and ceramic HV feed-throughs (U/Th/K)

XENON100 Material Screening

- Ultra-low background, 100 % efficient (2 kg) HPGe-spectrometer, operated at LNGS (plus detectors from LNGS screening facility)
- Shield: 5 cm of OFRP Cu (Norddeutsche Affinerie); 20 cm Pb (Plombum, inner 5 cm: 3 Bq/kg ²¹⁰Pb), air-lock system and nitrogen purge against Rn, slow control for online monitoring of HV, N₂ flow rate, leakage current and LN level
- Background spectrum: < 1 event/(kg d keV) above 40 keV
- Screened all XENON100 detector/shield components for a complete BG model

XENON100 Material Screening

Material*	²³⁸ U	²³² Th	⁴⁰ K	⁶⁰ Co
Stainless Steel 1.5 mm (316Ti, Nironit; cryostat)	<2 mBq/kg	<2 mBq/kg	10.5 mBq/kg	8.5 mBq/kg
Stainless Steel 25 mm (316Ti, Nironit, cryostat)	<1.3 mBq/kg	<0.9 mBq/kg	<7.1 mBq/kg	1.4 mBq/kg
PMTs (R8520-AL)	< 0.24 mBq/PMT	0.18 mBq/PMT	7.0 mBq/PMT	0.67 mBq/PMT
PMT Bases	0.16 mBq/pc	0.10 mBq/pc	<0.16 mBq/pc	<0.01 mBq/pc
Teflon (TPC)	< 0.3 mBq/kg	<0.16 mBq/kg	< 2.3 mBq/kg	
Poly I (shield)	< 3.8 mBq/kg	< 2.7 mBq/kg	< 5.88 mBq/kg	
Poly II (shield)	2.43 mBq/kg	< 0.67 mBq/kg	<4.66 mBq/kg	
Polish Pb (outer shield)	< 5.7 mBq/kg	< 1.6 mBq/kg	14 mBq/kg	< 1.1 mBq/kg
French Pb (inner shield)	< 6.8 mBq/kg	< 3.9 mBq/kg	< 28 mBq/kg	< 0.19 mBq/kg

* only a selection is shown here, all PMTs are screened and show consistent values; also screened: copper, cables, screws, ... ** thanks also to Matthias Laubenstein (LNGS screening facility)

Gamma Background Predictions from MC Simulations

Material	Rate [mdru]	
Stainless steel (cryostat, 65 kg)	2.01 ± 0.22	
Teflon (TPC, 10.7 kg)	0.18 ± 0.02	
PMTs (including bases, 242)	4.91 ± 0.60	
Polyethylene (shield, 2t)	2.50 ± 0.29	
Copper (shield, 2t)	0.026 ± 0.002	
Total*	9.63 ± 0.70	

* dominant background rate before S2/S1 discrimination in fiducial mass dru = events/(kg day keV)

Gamma Background Predictions from MC Simulations

Neutron Backgrounds: MC Simulations

- Internal neutron BG from detector materials + shield, from (α ,n) and fission reactions
- Numbers based on detailed MC, with measured U/Th activities of all materials

Material	Total n-rate [yr ⁻¹]	Single NR rate [µdru]
Stainless steel	15.0	0.18
Teflon	10.1	0.58
PMTs	7.0	0.32
LXe	0.81	0.007
Copper	1.6	0.01
Poly shield	416.3	0.49
Polish Pb	5805	
French Pb	1579	0.38
Total		~ 1.6

Laura Baudis, University of Zurich, CHIPP Plenary Meeting, September 9, 2008

=> ~ 0.6 single NRs/year in FV (~ 44% of events are singles)

WIMP rate versus neutron background

- assumptions:
 - ➡ spin-independent WIMP-nucleon cross section: 2x10⁻⁴⁵ cm²
 - Iocal WIMP density: 0.3 GeV/cm³

