1 Why care about muons ?

- **- What is the origin of the patterns of quark and lepton masses and mixings?**
- **- Most models predict new phenomena involving charged leptons which may even be required to solve the puzzle.**
- **- Predicted rates for LFV decays are often within reach experimentally.**
- **- The sensitivity to the muon edm could be raised by factor 5000.**
- The experimental sensitivity for $\mu^+ \to e^+ \gamma$ is limited by accidental $e^+ \gamma$ coincidences and **muon beam intensities have to be reduced now already.**
- **- Searches for** µ − e **conversion are limited by the available beam intensities and large improvements in sensitivity may still be achieved.**
- **- What about** µ → 3e 2 **(20 year old upper limit** 10[−]¹²**) ?**

¹Flavour phenomena in the charged lepton sector have been discussed in a recent series of CERN workshops. Report available. ²Discussed at a PSI workshop two months ago

2 muon EDM

 $\mathcal{H} \sim d\vec{E} \cdot \vec{S}$

- **- EDMs violate CP (and we need that) and are predicted by many BSM scenarios.**
- **- Present limits already severely constrain parameter space and large improvements are still expected.**
- **- Atoms can have enormous enhancement factors thanks to their large internal** E **fields.**

Current constraints within three representative classes of EDMs.

	system fundamental dependence	current bound (e cm)
atom	$d_{\rm para} \sim 10 \alpha^2 Z^3 d_e$	$ d_{\text{TI}} < 9 \times 10^{-25}$
atom	$d_{\text{dia}} \sim 10Z^2 (R_N/R_A)^2 d_q$	$ d_{\text{Hg}} < 2 \times 10^{-28}$
	neutron $d_n \approx 1.4(6) \times (d_d - 0.25d_u) + 1.1(5) \times e(\ddot{d}_d + 0.5\ddot{d}_u) + 20 \text{ MeV} \times e w$	$ d_n < 3 \times 10^{-26}$

- **- Muon EDM from g-2 experiment:** d^µ < 2.4 × 10[−]¹⁹ **e cm.**
- **Muon g-2 indirectly gives** $d_{\mu} \leq 10^{-22}$ e cm.
- **-** Most models give $d_{\mu}/d_e \propto m_{\mu}/m_e$ so $d_{\mu} < 10^{-25}$ e cm.

Feasibility at PSI studied by Andreas Adelman, Klaus Kirch, Thomas Schietinger, Andreas Streun and Gerco Onderwater (KVI). ³

- Inject muons one by one in a storage ring

Asymmetry(t)

 0.03

0.02

 0.01

 -0.01

 -0.02

 -0.03

 -0.04

- **- Apply radial** E **field to cancel g-2 precession**
- **- Look for build up of vertical muon spin (and so decay) asymmetry**

senerated n (10⁻⁶): 5.000 (10^6) : 6.771 + 1.08

linear fit function

of events: 10000000 \rightarrow 9971956 (t) \rightarrow 5523687 (c)

BooFit model (contains numerical noise

 $\overline{10}$

 12

 14

 16

 $\overline{18}$ $\overline{2}0$ tlus

 $\overline{\mathbf{a}}$

1 minute data taking at present e^µ *limit*

³http://amas.web.psi.ch/projects/muonedm/muEDM20070704.pdf

Programm µ → 3e *Workshop (*https://midas.psi.ch/elogs/MEEE/*)*

3 $\mu \rightarrow 3e$ has many more diagrams than $\mu \rightarrow e\gamma$

Testing Supersymmetry with Lepton Flavor Violating tau **and** μ **decays** *Ernesto Arganda and Maria J. Herrero*

FIG. 1: $\gamma\text{-penguin diagrams contributing to the } l_j^- \rightarrow l_i^- l_i^- l_i^+$ decay

FIG. 2: Z-penguin diagrams contributing to the $l_j^-\rightarrow l_i^-l_i^-l_i^+$ decay 18

Lausanne September 8 2008

 $l_i(p_1)$

 $l_i(p_3)$

andries van der schaaf, Zürich

 $(B2)$

 $l_j(p)$

 $l_i(p_2)$

 $l_i(p_1)$

 $l_i(p_3)$

 $l_i(p_1)$

 $l_i(p_3)$

 $\tilde{\nu}_X$

 $l_i(p_2)$

 χ_{B}

 $(B3)$

FIG. 4: Higgs-penguin diagrams contributing to the $l_j^- \to l_i^- l_i^+ l_i^+$ decay. Here

3.1 A recent example: the Littlest Higgs Model

Buras et al., 2007

An alternative to SUSY recently developped by Arkani-Hamed et al.

A (The ?) minimal extension of the SM "weakly coupled to new physics" at the TeV scale:

- below 1 TeV nothing changes and around 1 TeV a handful of additional particles are predicted.

Figure 9: Correlation between $\mu \to e\gamma$ and $\mu^- \to e^-e^+e^-$ in the scenarios of Section 12.2. In the right plot of Scenario C we show the contributions to $\mu^- \to e^-e^+e^-$ from \bar{D}'_{odd} (purple, lowermost), \bar{Z}_{odd}^{pe} (orange, middle) and $\bar{Y}_{e,odd}^{\mu e}$ (light-blue, uppermost) separately. The shaded area represents the experimental constraints.

$\mu \rightarrow 3e$ and muon EDM 5000 times better?

Table 2: Upper bounds on LFV decay branching ratios in the LHT model, for two different values of the scale f, after imposing the constraints on $\mu \to e\gamma$ and $\mu^- \to e^-e^+e^-$. The numbers qiven in brackets are obtained after imposing the additional constraint $R(\mu Ti \rightarrow$ eTi $\langle 5 \cdot 10^{-12} \rangle$. For $f = 500 \,\text{GeV}$, also the bounds on $\tau \to \mu \pi$, $e\pi$ have been included. The current experimental upper bounds are also given.

Lausanne September 8 2008

andries van der schaaf, Zürich

Figure 10: $\mu - e$ conversion rate in $^{48}_{22}Ti$ as a function of $Br(\mu \rightarrow e \gamma)$, after imposing the existing constraints on $\mu \to e\gamma$ and $\mu^- \to e^-e^+e^-$. The shaded area represents the current experimental upper bound on $R(\mu Ti \rightarrow e Ti)$.

Table 3: Comparison of various ratios of branching ratios in the LHT model and in the MSSM without and with significant Higgs contributions.

- **4 signature** µ → 3e **at rest**
- **- total energy, total momentum, (**→ **coplanarity).**
- **- Phase space distribution gives additional information if observed.**
- **-** In a constant B field the acceptance is defined by the p_t threshold.

involves low invariant mass $e^+e^−$ pairs produced by photons or by Bhabha scattering.

Suppressing accidental background:

- **- The three trajectories meet in a common vertex.**
- **- The common vertex has to be in a muonstop region. For this reason SINDRUM I used a relatively large surface target.**

- An active target could lead to a dramatic supression since one would know the interaction point of γ conversions and Bhabha scatterings. ⁴

⁴Peter Kammel is gratefully acknowledged to bring this up

5.1 How to reach a single-event sensitivity of O(10[−]¹⁶) **?**

- **- Measure 100 instead of 10 weeks.**
- **- Raise stop rate from** 5×10⁶ **to** 10⁹ **/s.**
- \blacksquare **Lower threshold on** p_t to gain in **acceptance.**

 χ^2 is a test of the $e^+e^+e^-$ correlation based on *time and vertex variables*

 $\hat{P}^2 \equiv \left(\frac{P\|}{\sigma_{\rm BH}}\right)$ $\sigma_{P\parallel}$ $\bigg)^2 + \bigg(\frac{P\perp}{\sigma_{\rm BL}}\bigg)$ $\overline{\sigma_{P\perp}}$ \setminus^2

k *and* ⊥ *are defined w.r.t. the decay plane.*

5.2 What about background ?

reducing accidental background by improving detector resolutions

a for example by linear scaling the detector by factor 2

So one would need an additional factor 100.

A vertex detector would do the job if it would stand the rate.

5.3 1985: LAMPF TPC

The Time Projection Chamber AIP Conference Proceedings 108, ed. J.A. Macdonald contributions by W.W. Kinnison and R.J. McKee

- **- six authors!**
- **- diameter 122 cm, length 55 cm**
- **- Both the incoming surface muon and its decay positron are observed.**
- **- momentum resolution 1**%

5.4 Detector issues

SINDRUM I

B beam

- *S focussing solenoid*
- *T hollow target*
- *C MWPC tracking*
- *H plastic hodoscope*

Н \overline{B}

Events triggered with an ultra-thin scintillator.

- *- Cathodes image the avalanches at the anodes.*
- *- Phi resolution given by number of anode wires.*
- *- z resolution 0.2 mm.*

Could one stand the rate?

- extra tracks, combinatorial background

SINDRUM I saw about 0.1 extra track per event at the 50 - 70 ns gating time. If the detector would twice faster there would be 10 random tracks. No problem with sufficient granularity (at least 500 anode wires and cathode strips per plane).

SINDRUM I v.s. MEGA

Conclusion: it could work

6 A radial TPC ?

(Roland Horisberger)

Micro-pattern readout schemes as studied by LCTPC and CERN RD51 (5 years starting now, (Geneva is in) would:

- **- match the intrinsic precission offered by TPC's,**
- **- stand high particle fluxes by suppression of ion back-flow,**
- **- allow curved structures for radial drift field.**

delta electron imaged by LCTPC prototype 14×14 mm²

Cross-section of $\mu \rightarrow 3e$ Experiment

6.1 Open issues

- **- What is the highest beam intensity that PSI can deliver in 5 years? Proton current 2**→**3 mA, optimized target geometry.**
- How harmful is loss of central region? One would like to see the $e^+e^+e^-$ vertex.
- **- A TPC is a slow device. Can events with 10**⁴ **additional muon tracks and decay positrons be analyzed?**
- **- Can triggering be solved? Would a second plastic layer help to trigger fast on charge?**
- **- Would a hybrid scheme (much smaller and faster gated TPC for vertex only combined with 25 ns tracker) solve some of the above?**
- **- Budget? Comparable to MEG?**
- **- Sufficient interest to form an international collaboration?**
- **- Interested colleagues should sign Stefan Ritt's ELOG:** https://midas.psi.ch/elogs/MEEE/
- **- And/Or contact to Klaus Kirch!**