1 Why care about muons ?¹

- What is the origin of the patterns of quark and lepton masses and mixings?
- Most models predict new phenomena involving charged leptons which may even be required to solve the puzzle.
- Predicted rates for LFV decays are often within reach experimentally.
- The sensitivity to the muon edm could be raised by factor 5000.
- The experimental sensitivity for $\mu^+ \rightarrow e^+ \gamma$ is limited by accidental $e^+ \gamma$ coincidences and muon beam intensities have to be reduced now already.
- Searches for μe conversion are limited by the available beam intensities and large improvements in sensitivity may still be achieved.
- What about $\mu \to 3e^{\ 2}$ (20 year old upper limit 10^{-12}) ?

¹Flavour phenomena in the charged lepton sector have been discussed in a recent series of CERN workshops. Report available. ²Discussed at a PSI workshop two months ago

2 muon EDM

 $\mathcal{H} \sim d\vec{E} \cdot \vec{S}$

- EDMs violate CP (and we need that) and are predicted by many BSM scenarios.
- Present limits already severely constrain parameter space and large improvements are still expected.
- Atoms can have enormous enhancement factors thanks to their large internal *E* fields.

Current constraints within three representative classes of EDMs.

system	fundamental dependence	current bound (e cm)
atom	$d_{\rm para} \sim 10 \alpha^2 Z^3 d_e$	$ d_{\rm Tl} < 9 \times 10^{-25}$
atom	$d_{ m dia} \sim 10 Z^2 (R_N/R_A)^2 \tilde{d}_q$	$ d_{\rm Hg} < 2 \times 10^{-28}$
neutron	$d_n \approx 1.4(6) \times (d_d - 0.25d_u) + 1.1(5) \times e(\tilde{d}_d + 0.5\tilde{d}_u) + 20 \mathrm{MeV} \times e w$	$ d_n < 3 \times 10^{-26}$

- Muon EDM from g-2 experiment: $d_{\mu} < 2.4 \times 10^{-19}$ e cm.
- Muon g-2 indirectly gives $d_{\mu} \lesssim 10^{-22}$ e cm.
- Most models give $d_\mu/d_e \propto m_\mu/m_e$ so $d_\mu < 10^{-25}$ e cm.

Feasibility at PSI studied by Andreas Adelman, Klaus Kirch, Thomas Schietinger, Andreas Streun and Gerco Onderwater (KVI). ³

- Inject muons one by one in a storage ring

Asymmetry(t)

0.03

0.02

0.01

-0.01

-0.02

-0.03

-0.04

- Apply radial E field to cancel g-2 precession
- Look for build up of vertical muon spin (and so decay) asymmetry

nerated η (10⁻⁶): 5.000 ted n (10⁻⁶): 6.771±1.083

number of events: $1000000 \rightarrow 9971956$ (t) $\rightarrow 5523687$ (c)

inear fit function

6

RooFit model (contains numerical noise)

10

12

14

16

18 20

t [µs]

8

1 minute data taking at present e_{μ} limit

³http://amas.web.psi.ch/projects/muonedm/muEDM20070704.pdf

Programm $\mu \rightarrow 3e$ Workshop (https://midas.psi.ch/elogs/MEEE/)

Welcome	Stefan Ritt	PSI
purpose of the exercise		
Motivation	Andries van der Schaaf	UZH
$\mu \rightarrow 3e \text{ v.s. } \mu \rightarrow e\gamma \text{ v.s. } \mu - e \text{ conversion}$		
SINDRUMI	Willi Bertl	PSI
the best result since 20 years		
Design criteria for a new $\mu \rightarrow 3e$ experiment	Andries van der Schaaf	UZH
limitations to the sensitivity		
Ideas for a new $\mu \rightarrow e^+ e^+ e^-$ experiment	Roland Horisberger	PSI
a large radial TPC with fine-grained readout		
∏E5 beam line	Peter-Raymond Kettle	PSI
the MEG experience		
Active targets IKAR & MAYA	Oleg Kiselev	PSI
alternatives mainly for heavy fragments		
MuCAP TPC	Malte Hildebrandt	PSI
a TPC based on hydrogen		
Geiger mode APDs	Dieter Renker	PSI
from strips to pads for the plastic scintillator		

3 $\mu \rightarrow 3e$ has many more diagrams than $\mu \rightarrow e\gamma$

Testing Supersymmetry with Lepton Flavor Violating tau and μ decays **Ernesto Arganda and Maria J. Herrero**

FIG. 1: $\gamma\text{-penguin diagrams contributing to the }l^-_j \rightarrow l^-_i l^-_i l^+_i$ decay

FIG. 2: Z-penguin diagrams contributing to the $l_j^- \rightarrow l_i^- l_i^- l_i^+ \text{ de5} \sqrt[4]{18}$

Lausanne September 8 2008

 $l_i(p_1)$

 $l_i(p_3)$

andries van der schaaf, Zürich

(B2)

FIG. 4: Higgs-penguin diagrams contributing to the $l^-_j \to l^-_i l^-_i l^+_i$ decay. Here

3.1 A recent example: the Littlest Higgs Model

Buras et al., 2007

An alternative to SUSY recently developped by Arkani-Hamed et al.

A (The ?) minimal extension of the SM "weakly coupled to new physics" at the TeV scale:

 below 1 TeV nothing changes and around 1 TeV a handful of additional particles are predicted.

> Figure 9: Correlation between $\mu \to e\gamma$ and $\mu^- \to e^-e^+e^-$ in the scenarios of Section 12.2. In the right plot of Scenario C we show the contributions to $\mu^- \to e^-e^+e^-$ from $\bar{D}'_{odd}^{\mu e}$ (purple, lowermost), $\bar{Z}^{\mu e}_{odd}$ (orange, middle) and $\bar{Y}^{\mu e}_{e,odd}$ (light-blue, uppermost) separately. The shaded area represents the experimental constraints.

andries van der schaaf, Zürich

$\mu \rightarrow 3e$ and muon EDM 5000 times better?

decay	$f = 1000 \mathrm{GeV}$	$f = 500 \mathrm{GeV}$	exp. upper bound
$\mu \to e \gamma$	$1.2 \cdot 10^{-11} \ (1 \cdot 10^{-11})$	$1.2 \cdot 10^{-11} \ (1 \cdot 10^{-11})$	$1.2 \cdot 10^{-11} [17]$
$\mu \rightarrow e^- e^+ e^-$	$1.0\cdot 10^{-12} \ (1\cdot 10^{-12})$	$1.0\cdot 10^{-12}\;(1\cdot 10^{-12})$	$1.0 \cdot 10^{-12}$ [42]
$\mu {\rm Ti} \rightarrow e {\rm Ti}$	$2 \cdot 10^{-10} \ (5 \cdot 10^{-12})$	$4 \cdot 10^{-11} \ (5 \cdot 10^{-12})$	$4.3 \cdot 10^{-12}$ [29]
$\tau \to e \gamma$	$8 \cdot 10^{-10} \ (7 \cdot 10^{-10})$	$1 \cdot 10^{-8} \ (1 \cdot 10^{-8})$	$9.4 \cdot 10^{-8}$ [33]
$\tau \to \mu \gamma$	$8\cdot 10^{-10}~(8\cdot 10^{-10})$	$2 \cdot 10^{-8} \ (1 \cdot 10^{-8})$	$1.6 \cdot 10^{-8}$ [33]
$\tau^- \to e^- e^+ e^-$	$7\cdot 10^{-10}~(6\cdot 10^{-10})$	$2 \cdot 10^{-8} \ (2 \cdot 10^{-8})$	$2.0 \cdot 10^{-7}$ [71]
$\tau^- \to \mu^- \mu^+ \mu^-$	$7 \cdot 10^{-10} \ (6 \cdot 10^{-10})$	$3 \cdot 10^{-8} \ (3 \cdot 10^{-8})$	$1.9\cdot 10^{-7}$ [71]
$\tau^- \to e^- \mu^+ \mu^-$	$5 \cdot 10^{-10} \ (5 \cdot 10^{-10})$	$2 \cdot 10^{-8} \ (2 \cdot 10^{-8})$	$2.0\cdot 10^{-7}$ [72]
$\tau^- \to \mu^- e^+ e^-$	$5 \cdot 10^{-10} \ (5 \cdot 10^{-10})$	$2 \cdot 10^{-8} \ (2 \cdot 10^{-8})$	$1.9 \cdot 10^{-7}$ [72]
$\tau^- \to \mu^- e^+ \mu^-$	$5 \cdot 10^{-14} \ (3 \cdot 10^{-14})$	$2 \cdot 10^{-14} \ (2 \cdot 10^{-14})$	$1.3\cdot 10^{-7}$ [71]
$\tau^- \to e^- \mu^+ e^-$	$5 \cdot 10^{-14} \ (3 \cdot 10^{-14})$	$2 \cdot 10^{-14} \ (2 \cdot 10^{-14})$	$1.1 \cdot 10^{-7}$ [71]
$\tau \to \mu \pi$	$2\cdot 10^{-9}~(2\cdot 10^{-9})$	$5.8 \cdot 10^{-8} \ (5.8 \cdot 10^{-8})$	$5.8 \cdot 10^{-8}$ [33]
$\tau \to e\pi$	$2 \cdot 10^{-9} \ (2 \cdot 10^{-9})$	$4.4 \cdot 10^{-8} \ (4.4 \cdot 10^{-8})$	$4.4 \cdot 10^{-8}$ [33]
$\tau \to \mu \eta$	$6\cdot 10^{-10}~(6\cdot 10^{-10})$	$2 \cdot 10^{-8} \ (2 \cdot 10^{-8})$	$5.1 \cdot 10^{-8}$ [33]
$\tau \to e \eta$	$6\cdot 10^{-10}~(6\cdot 10^{-10})$	$2\cdot 10^{-8} \ (2\cdot 10^{-8})$	$4.5 \cdot 10^{-8}$ [33]
$\tau \to \mu \eta'$	$7\cdot 10^{-10}~(7\cdot 10^{-10})$	$3\cdot 10^{-8} \ (3\cdot 10^{-8})$	$5.3\cdot 10^{-8}$ [33]
$\tau \to e \eta'$	$7\cdot 10^{-10}~(7\cdot 10^{-10})$	$3 \cdot 10^{-8} \ (3 \cdot 10^{-8})$	$9.0\cdot 10^{-8}$ [33]
$K_L \to \mu e$	$4 \cdot 10^{-13} \ (2 \cdot 10^{-13})$	$3 \cdot 10^{-14} \ (3 \cdot 10^{-14})$	$4.7 \cdot 10^{-12}$ [50]
$K_L \to \pi^0 \mu e$	$4 \cdot 10^{-15} \ (2 \cdot 10^{-15})$	$5\cdot 10^{-16}~(5\cdot 10^{-16})$	$6.2 \cdot 10^{-9}$ [73]
$B_d \to \mu e$	$5 \cdot 10^{-16} \ (2 \cdot 10^{-16})$	$9 \cdot 10^{-17} \ (9 \cdot 10^{-17})$	$1.7 \cdot 10^{-7}$ [74]
$B_s \to \mu e$	$5 \cdot 10^{-15} \ (2 \cdot 10^{-15})$	$9 \cdot 10^{-16} \ (9 \cdot 10^{-16})$	$6.1 \cdot 10^{-6}$ [75]
$B_d \to \tau e$	$3 \cdot 10^{-11} \ (2 \cdot 10^{-11})$	$2 \cdot 10^{-10} \ (2 \cdot 10^{-10})$	$1.1 \cdot 10^{-4}$ [76]
$B_s \to \tau e$	$2 \cdot 10^{-10} \ (2 \cdot 10^{-10})$	$2 \cdot 10^{-9} \ (2 \cdot 10^{-9})$	
$B_d \to \tau \mu$	$3 \cdot 10^{-11} \ (3 \cdot 10^{-11})$	$3\cdot 10^{-10}~(3\cdot 10^{-10})$	$3.8 \cdot 10^{-5}$ [76]
$B_s \to \tau \mu$	$2 \cdot 10^{-10} \ (2 \cdot 10^{-10})$	$3 \cdot 10^{-9} \ (3 \cdot 10^{-9})$	

Table 2: Upper bounds on LFV decay branching ratios in the LHT model, for two different values of the scale f, after imposing the constraints on $\mu \to e\gamma$ and $\mu^- \to e^-e^+e^-$. The numbers given in brackets are obtained after imposing the additional constraint $R(\mu Ti \to eTi) < 5 \cdot 10^{-12}$. For f = 500 GeV, also the bounds on $\tau \to \mu\pi, e\pi$ have been included. The current experimental upper bounds are also given.

Lausanne September 8 2008

andries van der schaaf, Zürich

Figure 10: $\mu - e$ conversion rate in $\frac{48}{22}Ti$ as a function of $Br(\mu \to e\gamma)$, after imposing the existing constraints on $\mu \to e\gamma$ and $\mu^- \to e^-e^+e^-$. The shaded area represents the current experimental upper bound on $R(\mu Ti \to e Ti)$.

ratio	LHT	MSSM (dipole)	MSSM (Higgs)
$\boxed{ \frac{Br(\mu^- \rightarrow e^- e^+ e^-)}{Br(\mu \rightarrow e \gamma)} }$	0.42.5	$\sim 6 \cdot 10^{-3}$	$\sim 6 \cdot 10^{-3}$
$\frac{Br(\tau^- \rightarrow e^- e^+ e^-)}{Br(\tau \rightarrow e \gamma)}$	0.42.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{Br(\tau^- \rightarrow \mu^- \mu^+ \mu^-)}{Br(\tau \rightarrow \mu \gamma)}$	0.42.3	$\sim 2\cdot 10^{-3}$	0.060.1
$\frac{Br(\tau^-{\rightarrow}e^-\mu^+\mu^-)}{Br(\tau{\rightarrow}e\gamma)}$	0.31.6	$\sim 2\cdot 10^{-3}$	0.020.04
$\frac{Br(\tau^-\!\!\rightarrow\!\!\mu^-e^+e^-)}{Br(\tau\!\rightarrow\!\!\mu\gamma)}$	0.31.6	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{Br(\tau^-{\rightarrow}e^-e^+e^-)}{Br(\tau^-{\rightarrow}e^-\mu^+\mu^-)}$	1.31.7	~ 5	0.30.5
$\left \begin{array}{c} \frac{Br(\tau^- \rightarrow \mu^- \mu^+ \mu^-)}{Br(\tau^- \rightarrow \mu^- e^+ e^-)} \right. \label{eq:break}$	1.21.6	~ 0.2	$5\dots 10$
$\frac{R(\mu \mathrm{Ti} \to e \mathrm{Ti})}{Br(\mu \to e\gamma)}$	$10^{-2}\ldots 10^2$	$\sim 5 \cdot 10^{-3}$	$0.08 \ldots 0.15$

Table 3: Comparison of various ratios of branching ratios in the LHT model and in the MSSM without and with significant Higgs contributions.

- 4 signature $\mu \rightarrow 3e$ at rest
- total energy, total momentum, (\rightarrow coplanarity).
- Phase space distribution gives additional information if observed.
- In a constant B field the acceptance is defined by the p_t threshold.

involves low invariant mass e^+e^- pairs produced by photons or by Bhabha scattering.

Suppressing accidental background:

- The three trajectories meet in a common vertex.
- The common vertex has to be in a muonstop region. For this reason SINDRUM I used a relatively large surface target.

- An active target could lead to a dramatic supression since one would know the interaction point of γ conversions and Bhabha scatterings. 4

⁴Peter Kammel is gratefully acknowledged to bring this up

5.1 How to reach a single-event sensitivity of $O(10^{-16})$?

- Measure 100 instead of 10 weeks.
- Raise stop rate from 5×10^6 to 10^9 /s.
- Lower threshold on p_t to gain in acceptance.

 χ^2 is a test of the $e^+e^+e^-$ correlation based on time and vertex variables

 $\hat{P}^2 \equiv \left(\frac{P\|}{\sigma_{P\|}}\right)^2 + \left(\frac{P\bot}{\sigma_{P\bot}}\right)^2$

 \parallel and \perp are defined w.r.t. the decay plane.

5.2 What about background ?

assumption ^a	gain factor	background
 SINDRUM I	1	40000
$\Delta t imes$ 0.25	4	10000
vertex $ imes$ 0.5	4	2500
energy $ imes$ 0.5	2	1250
momentum × 0.5	4	300
target size \times 2	2	150
target mass/area \times 0.5	2	75

reducing accidental background by improving detector resolutions

^{*a*} for example by linear scaling the detector by factor 2

So one would need an additional factor 100.

A vertex detector would do the job if it would stand the rate.

Lausanne September 8 2008

andries van der schaaf, Zürich

5.3 1985: LAMPF TPC

The Time Projection Chamber AIP Conference Proceedings 108, ed. J.A. Macdonald contributions by W.W. Kinnison and R.J. McKee

- six authors!
- diameter 122 cm, length 55 cm
- Both the incoming surface muon and its decay positron are observed.
- momentum resolution 1%

Lausanne September 8 2008

H

andries van der schaaf, Zürich

5.4 Detector issues

SINDRUM I

B beam

- S focussing solenoid
- T hollow target
- C MWPC tracking
- *H* plastic hodoscope

B

Events triggered with an ultra-thin scintillator.

- Cathodes image the avalanches at the anodes.
- Phi resolution given by number of anode wires.
- z resolution 0.2 mm.

Could one stand the rate?

- extra tracks, combinatorial background

SINDRUM I saw about 0.1 extra track per event at the 50 - 70 ns gating time. If the detector would twice faster there would be 10 random tracks. No problem with sufficient granularity (at least 500 anode wires and cathode strips per plane).

	SINDRUM I	MEGA	
self-supporting	yes	no	
thickness	10 ⁻³	0.3 ×10 ⁻³	rad. length
wire spacing	2	1.3	mm
gas	Ar-C ₂ H ₆ (50-50)	CF ₄ - C ₄ H ₁₀ (80-20)	
gate width	60	30	ns
turns/helix	\approx 1	pprox 5	
peak stop rate	5 ×10 ⁶	2.5 ×10 ⁸	1/s
rate per anode	10 ⁵	10 ⁷	1/s
max. fluence	3 ×10 ²	$4{ imes}10^4$	1/mm ² ⋅s

SINDRUM I v.s. MEGA

Conclusion: it could work

6 A radial TPC ?

(Roland Horisberger)

Micro-pattern readout schemes as studied by LCTPC and CERN RD51 (5 years starting now, (Geneva is in) would:

- match the intrinsic precission offered by TPC's,
- stand high particle fluxes by suppression of ion back-flow,
- allow curved structures for radial drift field.

delta electron imaged by LCTPC prototype 14×14 mm²

<u>Cross-section of $\mu \rightarrow$ 3e Experiment</u>

6.1 Open issues

- What is the highest beam intensity that PSI can deliver in 5 years? Proton current $2\rightarrow 3$ mA, optimized target geometry.
- How harmful is loss of central region? One would like to see the $e^+e^+e^-$ vertex.
- A TPC is a slow device. Can events with 10⁴ additional muon tracks and decay positrons be analyzed?
- Can triggering be solved? Would a second plastic layer help to trigger fast on charge?
- Would a hybrid scheme (much smaller and faster gated TPC for vertex only combined with 25 ns tracker) solve some of the above?
- Budget? Comparable to MEG?
- Sufficient interest to form an international collaboration?
- Interested colleagues should sign Stefan Ritt's ELOG: https://midas.psi.ch/elogs/MEEE/
- And/Or contact to Klaus Kirch!