

Operation of and results from OPERA

Ciro Pistillo LHEP Bern University

LABORATORIUM FÜR HOCHENERGIEPHYSIK

CHIPP Plenary meeting

Lausanne, EPFL-LPHE September 8-9 2008

* previously forming the Neuchatel group, moved to Bern in August

CHIPP Plenary meeting

C.Pistillo - Bern Univ.

Physics goal

OPERA is designed for the direct observation of v_{τ} appearance in a pure v_{μ} beam in order to provide a final confirmation of neutrino oscillations in the atmospheric sector

The Cern Neutrino to Gran Sasso (CNGS) beam

L=730 km ; <evµ>=17 GeV</evµ>	
(νe+ve)/νμ=0.7% νμ/νμ = 2%	

4

Detection of the ν_τ appearance signal

Two conflicting requirements:

- \succ Large mass \rightarrow low Xsection
- > High spatial resolution \rightarrow signal selection, background rejection

The OPERA target is composed of ~150000 bricks

OPERA : a hybrid detector

Brick handling

Brick Manipulator System

- Brick extraction
- XRay exposure (local reference frame)

.Pistillo - Bern Univ.

Chemical plant for emulsion development

CHIPP Plenary meeting

C.Pistillo - Bern Univ.

Automated emulsion analysis

Strategy for event analysis

CHIPP Plenary meeting

Status of the experiment data taking

May 2006: electronic detectors commissioning

Aug 2006: technical run, 0.76*10¹⁸ pot collected

1 year CNGS nominal 4.5*10¹⁹ pot

319 interactions in the rock, mechanical structure and iron of the spectrometer

Oct 2006: start of brick production

Oct 2007: pilot physics run (~40% target) **0.82*10¹⁸ pot** first **38** neutrino events in the target

Jun 2008: OPERA detector filled and fully commissioned, 146000 bricks inserted (150000 by end 2008)

Jun 2008: Start first OPERA production run

Sep 2008: 5.6*10¹⁸ pot and ~500 neutrino events in the target

CHIPP Plenary meeting

C.Pistillo - Bern Univ.

Event 178969961: $v_{\mu}CC$ interaction

SIDE VIEW (Vertical projection)

CHIPP Plenary meeting

Event 183545620 located in Bern – first (only) v_e candidate

Event 180718369: a charm candidate

Clear kink topology + EM shower

Two e. m. showers pointing to vertex

OPERA v_{τ} observation probability

The 2008 OPERA run

Expectations: 127 days for the CNGS 2.3*10¹⁹ p.o.t

Total number of interactions	2660
v_{μ} CC events	2000
v_{μ} NC events	600
v_e / v_e events	17
Charm decay	84
Tau candidate (@2.5 10 ⁻³ eV ²)	1.0

Current situation (Aug 31th)

After 68 days: 5.6*10¹⁸ p.o.t ~45% of what originally expected

Prospects: Protons on Target 2008

Past activities of the Swiss researchers

- > conceptual design
- proposal
- CNGS beam design and optimization
- Construction of the Target Tracker
- lead production monitoring
- > development of European microscopes
- emulsion film robot
- test beams
- > physics analysis

Management of the experiment:

A.Ereditato (spokesperson), U. Moser (member of publication committee)

Emulsion scanning:

Largest scanning team in Europe (~10 physicist) and ~20% brick scanning at LHEP

Data Analysis responsabilities:

Electron identification, shower reconstruction, π^0 detection and τ search in τ -> e channel

Other Analysis activities:

Strategies for neutrino interaction vertex location for muon-less events

Determination of neutrino energy spectrum

Charm event studies

CHIPP Plenary meeting

PhD thesis in progress:

J. Knüsel (LHEP): low momentum muon identification

C. Lazzaro (ETHZ): determination of the CNGS neutrino energy spectrum from CC events reconstructed with the electronic detectors

F. Meisel (LHEP): measurement of the ν_e contamination of the CNGS beam

T. Strauss (ETHZ): neutrino induced charmed particle decays

Conclusions

-The whole detector is fully commissioned -The concept of the OPERA detector is experimentally validated

The first physics run started in June

After 68 days 5.6*10¹⁸ p.o.t have been collected
~500 neutrino interactions have been triggered by electronic detectors and are being analyzed in the scanning laboratories

Interesting topologies detected (charmed particle decay, prompt v_e) We just miss the tau! Chance to observe the first v_{τ} candidate event with 2008 run?

BACKUP SLIDES

τ search : Backgrounds

	т→е	т→µ	τ→h	t→3h	Total
Charm background	.173	.008	.134	.181	.496
Large angle µ scattering		.096			.096
Hadronic background		.077	.095	•	.172
Total per channel	.173	.181	.229	.181	.764

 $v_{\mu} \rightarrow v_{e}$ oscillation search

Θ ₁₃	SIGNAL	ν _e beam	$\tau \rightarrow e$	ν_{μ} NC	ν_{μ} CC
9 °	9.3	18	4.5	5.2	1.0
7°	5.8	18	4.5	5.2	1.0
5 °	3.0	18	4.6	5.2	1.0

$$\Delta m_{23}^{2} = 2.5 \times 10^{-3} \text{ eV}^{2}$$
 $\Theta_{23} = 45^{\circ}$
nominal CNGS beam 5 years

to improve S/B ratio

