Operation of and results from OPERA

Ciro Pistillo
LHEP Bern University
The Swiss participation in OPERA

A. Badertscher
C. Lazzaro
A. Rubbia
T. Strauss

A. Ariga
T. Ariga
A. Ereditato
J. Knüsel
F. Juget *
I. Kreslo
G. Lutter *
F. Meisel *
U. Moser
M. Messina
C. Pistillo
K. Pretzl
J.L Vuilleumier *

2 INSTITUTIONS, 17 PHYSICISTS

(OPERA: 35 institutions, ~200 physicists)

* previously forming the Neuchatel group, moved to Bern in August

CHIPP Plenary meeting

C. Pistillo - Bern Univ.
OPERA is designed for the direct observation of ν_τ appearance in a pure ν_μ beam in order to provide a final confirmation of neutrino oscillations in the atmospheric sector.

\[
P(\nu_\mu \rightarrow \nu_\tau) \equiv \sin^2(2\theta_{23})\cos^4(\theta_{13})\sin^2\left(\frac{1.27\Delta m_{31}^2 L (\text{Km})}{E(\text{GeV})}\right)
\]

best fit:

\[
\Delta m_{31}^2 = \begin{cases}
-2.37 \pm 0.15 \times 10^{-3} \text{ eV}^2 & \text{(inverted hierarchy)} \\
+2.46 \pm 0.15 \times 10^{-3} \text{ eV}^2 & \text{(normal hierarchy)}
\end{cases}
\]

\[
\theta_{23} = 42.3^{+5.1}_{-3.3}
\]
The Cern Neutrino to Gran Sasso (CNGS) beam

L = 730 km;
\langle E_{\nu\mu} \rangle = 17 \text{ GeV}

\bar{\nu}e + \nu e / \nu \mu = 0.7\%
\bar{\nu} \mu / \nu \mu = 2\%
Detection of the ν_τ appearance signal

Two conflicting requirements:
- Large mass \Rightarrow low Xsection
- High spatial resolution \Rightarrow signal selection, background rejection
The OPERA target

The OPERA target is composed of ~150000 bricks
OPERA: a hybrid detector

Spectrometer: XPC, HPT, RPC, magnet

Veto plane (RPC)

Target and Target Tracker

SM1

0.68 kton

SM2

0.68 kton
Brick handling

Brick Manipulator System

Xray machine

- Brick extraction
- XRay exposure (local reference frame)
Chemical plant for emulsion development

A dedicated building @ LNGS
Automated emulsion analysis

Fully unattended emulsion scanning.

40 microscopes in OPERA

LHEP Bern: Swiss Scanning Station with 5 microscopes. ~10 physicist from Bern and ETH Zürich involved.

Goal: analyze ~ 20% of the total OPERA bricks statistics (700/1000 brick/year).
Strategy for event analysis

Event: 218184565, 6 Jul 2008, 03:27 (UTC), YZ projection

Brick finding information: Super module 1

<table>
<thead>
<tr>
<th>BrickId</th>
<th>Wall</th>
<th>Side</th>
<th>Column</th>
<th>Row</th>
<th>Prob</th>
<th>CS x</th>
<th>CS y</th>
<th>Muon track parameters: Mu-</th>
</tr>
</thead>
<tbody>
<tr>
<td>brick 1</td>
<td>1036429</td>
<td>17</td>
<td>1</td>
<td>9</td>
<td>33</td>
<td>0.59</td>
<td>6.3</td>
<td>15.6</td>
</tr>
<tr>
<td>brick 2</td>
<td>1036448</td>
<td>17</td>
<td>1</td>
<td>9</td>
<td>32</td>
<td>0.37</td>
<td>5.3</td>
<td>128.9</td>
</tr>
<tr>
<td>brick 3</td>
<td>1067422</td>
<td>16</td>
<td>1</td>
<td>9</td>
<td>32</td>
<td>0.02</td>
<td>46.0</td>
<td>117.9</td>
</tr>
</tbody>
</table>

Selected brick
Brick in cell
Empty cell
Status of the experiment data taking

May 2006: electronic detectors commissioning

Aug 2006: technical run, \(0.76 \times 10^{18}\) pot collected

319 interactions in the rock, mechanical structure and iron of the spectrometer

Oct 2006: start of brick production

Oct 2007: pilot physics run (\(~40\%\) target) \(0.82 \times 10^{18}\) pot

first 38 neutrino events in the target

Jun 2008: OPERA detector filled and fully commissioned, 146000 bricks inserted (150000 by end 2008)

Jun 2008: Start first OPERA production run

Sep 2008: \(5.6 \times 10^{18}\) pot and \(~500\) neutrino events in the target
Event 178969961: ν_μ CC interaction

SIDE VIEW (Vertical projection)

19 m

8 m

43 mm

5 prongs

$\langle IP \rangle = 9 \mu m$

Electromagnetic shower pointing to the vertex (γ conversion)
Event 183545620 located in Bern – first (only) ν_e candidate

Em. Shower

$E = 4.7 \pm 1.3$ GeV

Neutrino vertex

$\text{IP} \approx 3 \mu$m
Event 180718369: a charm candidate

Flight length: 3247.2 μm
θ_{kink}: 0.204 rad
P_{\text{daughter}}: 3.9 (+1.7 -0.9) GeV
P_T: 796 MeV (> 606 MeV)

Clear kink topology + EM shower

Two e. m. showers pointing to vertex
OPERA ν_τ observation probability

OPERA 10-15 event 0.8 BG (5 full CNGS years)

- 3 σ sensitivity
- 4 σ sensitivity

SK 90% CL (L/E analysis) MINOS
The 2008 OPERA run

Expectations:
127 days for the CNGS
2.3 x 10^{19} p.o.t

Current situation (Aug 31th):
After 68 days: 5.6 x 10^{18} p.o.t
~45% of what originally expected

Prospects: Protons on Target 2008

<table>
<thead>
<tr>
<th>Total number of interactions</th>
<th>2660</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_μ CC events</td>
<td>2000</td>
</tr>
<tr>
<td>ν_μ NC events</td>
<td>600</td>
</tr>
<tr>
<td>$\nu_e/\bar{\nu}_e$ events</td>
<td>17</td>
</tr>
<tr>
<td>Charm decay</td>
<td>84</td>
</tr>
<tr>
<td>Tau candidate (@2.5 x 10^{-3} eV²)</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Past activities of the Swiss researchers

- conceptual design
- proposal
- CNGS beam design and optimization
- construction of the Target Tracker
- lead production monitoring
- development of European microscopes
- emulsion film robot
- test beams
- physics analysis
- …
Responsibilities of the Swiss researchers

Management of the experiment:
A. Ereditato (spokesperson), U. Moser (member of publication committee)

Emulsion scanning:
Largest scanning team in Europe (~10 physicist) and ~20% brick scanning at LHEP

Data Analysis responsibilities:
Electron identification, shower reconstruction, π^0 detection and τ search in $\tau \rightarrow e$ channel

Other Analysis activities:
Strategies for neutrino interaction vertex location for muon-less events
Determination of neutrino energy spectrum
Charm event studies
PhD thesis in progress:

J. Knüsel (LHEP): low momentum muon identification

C. Lazzaro (ETHZ): determination of the CNGS neutrino energy spectrum from CC events reconstructed with the electronic detectors

F. Meisel (LHEP): measurement of the ν_e contamination of the CNGS beam

T. Strauss (ETHZ): neutrino induced charmed particle decays
Conclusions

- The whole detector is fully commissioned
- The concept of the OPERA detector is experimentally validated

The first physics run started in June
- After 68 days 5.6×10^{18} p.o.t have been collected
- ~500 neutrino interactions have been triggered by electronic detectors and are being analyzed in the scanning laboratories

Interesting topologies detected (charmed particle decay, prompt ν_e) We just miss the tau! Chance to observe the first ν_τ candidate event with 2008 run?
BACKUP SLIDES
τ search: Backgrounds

Charm production in CC, common to the 3 channels

- $\nu_{\mu,e} \rightarrow \mu,e^{-}$
- $D^+ \rightarrow \mu^+,e^+$

Lead: Bck. to $\tau \rightarrow \mu$

- Coulombian large angle scattering of muons in e^+h^+
- Same decay topology as τ

Good muon identification is fundamental

Expected number of background events after 5 years running with nominal beam:

<table>
<thead>
<tr>
<th>Channel</th>
<th>$T\rightarrow e$</th>
<th>$T\rightarrow \mu$</th>
<th>$T\rightarrow h$</th>
<th>$T\rightarrow 3h$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charm background</td>
<td>.173</td>
<td>.008</td>
<td>.134</td>
<td>.181</td>
<td>.496</td>
</tr>
<tr>
<td>Large angle μ scattering</td>
<td>.096</td>
<td></td>
<td></td>
<td></td>
<td>.096</td>
</tr>
<tr>
<td>Hadronic background</td>
<td>.077</td>
<td>.095</td>
<td></td>
<td></td>
<td>.172</td>
</tr>
<tr>
<td>Total per channel</td>
<td>.173</td>
<td>.181</td>
<td>.229</td>
<td>.181</td>
<td>.764</td>
</tr>
</tbody>
</table>
$\nu_\mu \rightarrow \nu_e$ oscillation search

<table>
<thead>
<tr>
<th>Θ_{13}</th>
<th>SIGNAL</th>
<th>ν_e beam</th>
<th>$\tau \rightarrow e$</th>
<th>ν_μ NC</th>
<th>ν_μ CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>9°</td>
<td>9.3</td>
<td>18</td>
<td>4.5</td>
<td>5.2</td>
<td>1.0</td>
</tr>
<tr>
<td>7°</td>
<td>5.8</td>
<td>18</td>
<td>4.5</td>
<td>5.2</td>
<td>1.0</td>
</tr>
<tr>
<td>5°</td>
<td>3.0</td>
<td>18</td>
<td>4.6</td>
<td>5.2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

$\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2 \quad \Theta_{23} = 45^\circ$

nominal CNGS beam 5 years

Combined fit of E_e, E_{vis}, (pt)$_{miss}$ to improve S/B ratio

90% C.L. limits on $\sin^2(2\Theta_{13})$ and Θ_{13}:

$\sin^2(2\Theta_{13}) < 0.05 \quad \Theta_{13} < 7.1^\circ$