EXO experiment

Razvan Gornea, LHEP, Bern University CHIPP, Lausanne, September 2008

UNIVERSITÄT **BERN**

Double beta decay

EXO collaboration searches for neutrino-lessdouble b eta decay using enriched 136Xe

- \bigcap **Rare nuclear transition between same mass nuclei**
	- z **Ene rgetically allowed for even-even nuclei**
	- z**• Usually from ground state to ground state**
- { **(** *Z***,***A***) → (** *Z***+2,** *A***) + e-1 ⁺** ^ν**1 + e-2 ⁺** ν **2**{ **(** *Z***,***A***) → (** *Z***+2,** *A***) + e-1 + e-2**{ **(** *Z***,***A***) → (** *Z***+2,** *A***) + e-1 + e-2 ⁺** χ

$$
\left[T_{1/2}^{0\nu}(0^+ \to 0^+)\right]^{-1} = G^{0\nu}(E_0, Z) \left|M_{\text{GT}}^{0\nu} - \frac{g_V^2}{g_A^2} M_{\text{F}}^{0\nu}\right|^2 \langle m_\nu \rangle^2
$$

Phase space factor

Nuclear matrix elements

$$
\langle m_{\nu} \rangle^{2} = \left| \sum_{i}^{N} U_{ei}^{2} m_{i} \right|^{2} = \left| \sum_{i}^{N} |U_{ei}|^{2} e^{\alpha_{i}} m_{i} \right|^{2}
$$

S.R. Elliott & P. V o g el, An n. Rev. N ucl. Part. S ci. 5 2 (2002) 115

- \bigcap **Obs ervation of neutrino-less double beta decay would provide information about the nature of the neutrino and help to deter mine the mass pattern**
	- \bullet **^m**ν **[≠] 0 (required)**
	- \bullet ν **=** ν **(required)**
	- z∆**L = 2 (conserve d in S.M.)**
	- z**<m_v>, "effective mass" is the average over neutrino masses**
- \bigcap **Combined with data from neutrino oscillation experiments**
	- \bullet **m** $_{\text{v}}$ **≠ 0 (already determined)**
	- z∆m²_{ij} only defines a lower limit on
neutrino mass scale
	- \bullet ∆ **m 2 atm≈ 3** X **10-³ eV 2**
	- **sin 2 2** θ**atm≈ 1. 0** z
	- ∆ **m2 sol≈ 5** X **10-⁵ eV 2** z
	- **a** sin² $2\theta_{sol}$ ≈ 0.8 z

Computations for 13 6Xe

T1/²: 48. 4, 13.2, 8.8, 21.2, 7.2 X *1026 years for <m* ^ν*> = 50 meV*

Q = 2479 keV

8.9% natural abundance

EXO collaboration

- \circ \circ K.Barry, D.Leonard, E.Niner, A.Piepke from **Physics Dept, University of Alabama, Tuscaloosa AL, USA**
- \circ P.Vogel from **Physics D ept Caltech, P asadena CA, USA**
- Ω A.Bellerive, M.Bowcock, M.Dixit, C.Hargrove, E.Rollin, D.Sin clair, V. Strickland from **Carleto n University, Ottawa, Canada**
- \circ C. Benitez-Medina, S.Cook, W.Fairbank Jr., K.Hall, B.Mo n g from **Colorado State Univer sity, Fort Collins CO, USA**
- \circ \circ M. Moe from **Physics Dept, UC Irvine, Irvine CA, USA**
- D.Akimov, I.Alexandrov, A.Burenkov, M.Danilov, A.Dolgolenko, A.Kovalenko, V.Stekhanov from **ITEP Moscow, Russia** \circ
- \circ J.Farine, D.Hallman, C.Virtue, U.Wich oski from **La urentian University, Canada**
- \circ H.Breuer, C.Hall, L.Kaufman, S. Slutsky, Y-R. Yen from **University of Maryland, College Park MD, USA**
- \circ K.Kumar from **University of Mas sachusetts, Amherst, USA**
- Ω \circ *M.Auger, R.Gornea, F. Juget, J-L.Vuilleumier, J-M.Vuilleumier* from LHEP, Bern University, Switzerland N.Ackerman, M.Breidenbach, R.Conley, W.Craddock, J.Hodgson, D.McKay, A.Odian, C.Prescott, P.Rowson, K.Skarpaas, J.Wodin, L.Yang, S.Zalog from **SLAC, Menlo Park CA, U SA**
- o J.Anthony, L.Bartoszek, R.DeVoe, P.Fierlinger, B.Flatt, G.Gratta, M.Green, S.Kolkowitz, F.LePort, M.Montero-Diez, R.Neilson, M. Noske, \circ K.O'Sulliva n, A.Pocar, K.Twilker from **Physics Dept, Stanford Univer sity, Stanf ord CA, USA**

EXO-200 project

Installation at WIPP

Expected performance

{ **Very low radioactive background expected**

- z*Careful selection of materials*
- z*Optimized custom design*
- z• Manufacturing, handling and installation in clean rooms
- { **Very good energy resolution**

The ultimate background is the ββ **2** ν

Physics runs starting in April 2009 Targeted run time: about two years

<u>Good energy resolution is essential.</u>

 $\frac{S}{B} = \frac{m_e}{7Q\delta^6}\frac{\Gamma_{0\nu}}{\Gamma_{2\nu}} = \frac{m_e}{7Q\delta^6} \frac{T_{1/2}^{2\nu}}{T_{1/2}^{0\nu}}$

Note: ββ*2*^ν *not yet observed for 136Xe, limit at T1/2 > 1.2*1024 years (90% CL)*

1) R odin, et. al., N u cl. Phys. A 793 (2007) 213-215 2) Caurier, et. al., arXi v:0709.2137v1

Ba + tagging R&D

Easy Ba++ → Ba + conversion exp ected

- Xe and Ba ionization potentials
- **Xe + = 12.13 = 12.13 eV / Ba + = 5.21 eV**
- **Xe++ = 21.21 21.21 eV / Ba++ = 10.00 10.00 eV**
- Solid Xe band gap (Phys. Rev. B10 4464 1974)
- **E G = 9.22 +/- 0.01 eV**
- "Liquid Xe ionization potential" close to E_G (*J. Phys. C: Solid State Phys. Vol. 7 1974)*
- **9.28 t o 9.49 eV ran g e**
- **Use of additives for gas based detectors Use of for gas based detectors**

$\langle m_{_V}\rangle\,{\propto}\,1/\sqrt{T_{1/2}^{0\nu\beta\beta}}\,\propto\,1/\big(Nt\big)^{\!1/4}$

Measurement <u>without</u> **backgro und**

 $\langle m_{_V} \rangle$ \propto 1 / $\sqrt{T_{1/2}^{0\nu\beta\beta}}$ \propto 1 / \sqrt{Nt}

<u>Observed in a RF cage</u>

Future plans …

Swiss group activities

o Material qualification using the Ge detector installed in the "Vue des Alpes" tunnel

o R&D for the liquid and gas phase detectors

- Cryostat development
- Micromegas TPC operation at high pressure
- Light readout using fibers
- { Design and manufacturing of EXO-200 cryostat (completed)
- { Installation and operation underground shifts

"Vue des Alpes" setup

400 cc low background Ge detector High purity copper and lead shield Radon tight container and nitrogen purging

100 pg/g sensitivity for 232Th and 238U chains 1 µ*g/g sensitivity for K concentration*

Cryostat development

LN 2 cooling and electrical heating 100 kg of LXe maximum capacity Operation at high pressure possible Quartz windows for optical access

Micromegas TPC

- *- operation at high pressure*
- *- energy resolution optimization*
- *- additives selection*

Multiple amplification gaps tried: - 70, 100 and 250 µ*^m Drift voltages: - 200 to 300 V/cm/bar range Xe + CF4, Xe + isobutene CF4 advantageous: - increased drift velocity, reduced diffusion, does not absorb light*

Future Micromegas TPC R&D

Reuse the available infrastructure, mini-TPC (1 0 cm) and Gotha r TPC (50 cm), with improved Micromegas detectors!

The Gothar TPC availableAlread y used with a 50 cm Micromegas detector (P10 gas)

Pressure sealed seg mented anodes now available for very large surfaces

Conclusion

o EXO-200 detector soon operational • Should allow $\beta\beta$ 2ν observation with Xe \bullet Improved limits on ββ0^ν expected o Swiss group R&D work performed on both liquid and gas options \circ Continuous operation of a low background Ge detector for material qualification