Field Mapping: Magnetic AXIS OF FC2, SSU \& SSD

V. Blackmore

CM41
9th February, 2015

THE PROBLEM

- Alignment
- Geometric, magnetic and mapper axes

\square

\square
\square

\square

\square

\longrightarrow
\longrightarrow
-
\square
\square
\square \qquad -

Magnet Alignment

\triangle Survey point
Coil
Bellows

- \gg Reference particle
"ם

Co-ordinate systems Geometric axis

\triangle Survey point
Coil
Mapper
Hall probe

The co-ordinate system defined with respect to the survey points on the magnet exterior.

NB: Not the co-ordinate system of the MICE Hall...

$$
y_{g}
$$

Co-ordinate systems Magnetic axis

\triangle	Survey point
Coil	
\square	Mapper
\square	Hall probe

The co-ordinate system defined with respect to the coils on the magnet bobbin.

Also the line along which $B_{x}=B_{y}=0$.

Co-ordinate systems Mapper axis

\triangle Survey point
 Coil
 Mapper
 Hall probe

The co-ordinate system defined with respect to the centre of the measurement disc on the CERN field mapper.

Co-ordinate systems

\triangle Survey point

- Coil
- Mapper
\square Hall probe
- Measure the magnetic axis with the mapper
- Transform from mapper to geometric co-ordinates

Sounds easy!
... right?

Co-ordinate systems

- Catch: We measure the field components in the mapper system.

θ_{x} is the rotation of the magnetic axis around
the x-axis. There may be a corresponding
θ_{x} is the rotation of the magnetic axis around
the x-axis. There may be a corresponding rotation around the y-axis
-

$$
B_{y, m}=
$$

Co-ordinate systems

- Catch: We measure the field components in the mapper system.

$$
B_{m, y}
$$

Test field maps*

1. Define a measurement grid in the mapper system: $\left(x_{m}, y_{m}, z_{m}\right)$.
2. Transform measurement grid to coil system:

$$
\left(\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right)=R_{z} R_{y} R_{x}\left(\begin{array}{l}
x_{m} \\
y_{m} \\
z_{m}
\end{array}\right)
$$

3. Calculate field in coil system: $\left(B_{x, c}, B_{y, c}, B_{z, c}\right)$
4. Transform fields back to mapper system:

$$
\left(\begin{array}{l}
B_{x, m} \\
B_{y, m} \\
B_{z, m}
\end{array}\right)=\left(R_{z} R_{y} R_{x}\right)^{T}\left(\begin{array}{l}
B_{x, c} \\
B_{y, c} \\
B_{z, c}
\end{array}\right)
$$

5. Now have 'measurements' of a tilted coil (or coils) in mapper system.

$$
\begin{aligned}
R_{x} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{x} & -\sin \theta_{x} \\
0 & \sin \theta_{x} & \cos \theta_{x}
\end{array}\right) \\
R_{x T} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{x} & \sin \theta_{x} \\
0 & -\sin \theta_{x} & \cos \theta_{x}
\end{array}\right) \\
R_{y} & =\left(\begin{array}{ccc}
\cos \theta_{y} & 0 & \sin \theta_{y} \\
0 & 1 & 0 \\
-\sin \theta_{y} & 0 & \cos \theta_{y}
\end{array}\right) \\
R_{y T} & =\left(\begin{array}{ccc}
\cos \theta_{y} & 0 & -\sin \theta_{y} \\
0 & 1 & 0 \\
\sin \theta_{y} & 0 & \cos \theta_{y}
\end{array}\right) \\
R_{z} & =\left(\begin{array}{ccc}
\cos \theta_{z} & -\sin \theta_{z} & 0 \\
\sin \theta_{z} & \cos \theta_{z} & 0 \\
0 & 0 & 1
\end{array}\right) \\
R_{z T} & =\left(\begin{array}{ccc}
\cos \theta_{z} & \sin \theta_{z} & 0 \\
-\sin \theta_{z} & \cos \theta_{z} & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Test firdonans

$$
\begin{array}{llc}
B_{x, m} & = & B_{x, c} \cos \theta_{y}-B_{z, c} \sin \theta_{y} \\
B_{y, m} & = & B_{x, c} \sin \theta_{x} \sin \theta_{y}+B_{y, c} \cos \theta_{x}+B_{z, c} \sin \theta_{x} \cos \theta_{y} \\
B_{z, m} & = & B_{x, c} \sin \theta_{x} \sin \theta_{y}-B_{y, c} \sin \theta_{x}+B_{z, c} \cos \theta_{x} \cos \theta_{y}
\end{array}
$$

To first approximation, at a particular $z, B_{x, c}$ should be linear with x and similarly for y,

$$
B_{x, c}=m_{x} x_{c}+C \longleftarrow \begin{aligned}
& \text { If we were offset from the axis, } C \text { would represent that } \\
& \text { offset. In the perfectly aligned magnet system, } C=0 .
\end{aligned}
$$

On the axis in the magnet system, $B_{x, c}\left(x_{c}=0\right)=0$. So in the mapper system, on the axis we would see,

$$
\begin{aligned}
B_{x, m} & =-B_{z, c} \sin \theta_{y} \\
B_{y, m} & =B_{z, c} \sin \theta_{x} \cos \theta_{y} \\
B_{z, m} & =B_{z, c} \cos \theta_{x} \cos \theta_{y}
\end{aligned}
$$

Test Magnet: "FC-like"

- Assume that there is no rotation and that the mapper and magnetic axes are aligned.
- At each z, fit $B_{x, c}=m_{x} x_{c}+C$
- Then $x_{0, m}=-\frac{C}{m_{x}}$ is the position of the axis at that z. (Similar for y)

Test Magnet: "FC-like"

- Assume that there is no rotation and that the mapper and magnetic axes are aligned.
- At each z, fit $B_{x, c}=m_{x} x_{c}+C$
- Then $x_{0, m}=-\frac{C}{m_{x}}$ is the position of the axis at that z. (Similar for y)

Test Magnet: "FC-like"

 the fit to prove a point. We need to find θ_{x} and θ_{x} still!- B_{z} is large, so axis tilts gain a non-negligible contribution

$$
B_{x, m}=B_{x, c} \cos \theta_{y}-B_{z, c} \sin \theta_{y}=\left(m_{x}+C\right) \cos \theta_{y}-B_{z, c} \sin \theta_{y}
$$

- Fit again, but with true θ_{x} and θ_{y} :

Can't ignore this

Test Magnet: "FC-like"

NB: This slide blatantly cheats at the fit to prove a point. We need to find θ_{x} and θ_{x} still!

- Using fitted values of $m_{x}, C, \theta_{x}, \theta_{y}$, estimate $\left\langle B_{x, m}\right\rangle$ (and similarly for y) and plot the residual
- Getting θ_{x} and θ_{y} perfectly, still limited by knowledge of $B_{z, c}$ at the level of 1 G (\sim error on Hall probe)

Test Magnet: "FC-like"

NB: This slide blatantly cheats at the fit to prove a point. We need to find θ_{x} and θ_{x} still!

- Using fitted values of $m_{x}, C, \theta_{x}, \theta_{y}$, estimate $\left\langle B_{x, m}\right\rangle$ (and similarly for y) and plot the residual
- Even if θ_{x} and θ_{y} are found perfectly, still limited by knowledge of $B_{z, c}$ at the level of 1 G (\sim error on Hall probe)

Test Magnet: "FC-like"

- Finding θ_{x} and θ_{y} :
- x_{0}, y_{0} calculated from $-\frac{C}{m_{x}},-\frac{D}{m_{y}}$ (slide 13)
- Excludes contributions from θ_{x} and θ_{y}
- At the magnetic axis, we would measure,

$$
\begin{aligned}
& B_{x, m}\left(x_{o}\right)=-\sin \theta_{y} B_{z, c} \\
& B_{y, m}\left(y_{o}\right)=+\sin \theta_{x} \cos \theta_{y} B_{z, c}
\end{aligned}
$$

- Improve future iterations by calculating ϑ_{x} and ϑ_{y} using current 'best fit' line to x_{0}, y_{0}

$$
\theta_{x}=\sum \vartheta_{x} \quad \theta_{y}=\sum \vartheta_{y}
$$

- Then feed forward to next iteration (i.e. beginning at slide 14...)

$$
B_{x, m}=\left(m_{x}+C\right) \cos \sum \vartheta_{y}-B_{z, c} \sin \sum \vartheta_{y}
$$

Test Magnet: "FC-like"

No cheating this time - attempt to retrieve θ_{x} and θ_{y}

$$
\begin{array}{lll}
x_{0}(z)=-0.00233 z-2.972 \times 10^{-5} & \theta_{x}=0.1106^{\circ} & \theta_{x, \text { true }}=0.1088^{\circ} \\
y_{0}(z)=0.00196 z-5.815 \times 10^{-5} & \theta_{y}=0.1324^{\circ} & \theta_{y, \text { true }}=0.1316^{\circ}
\end{array}
$$

Test Magnet: "FC-like"

No cheating this time - attempt to retrieve θ_{x} and θ_{y}

$$
\begin{array}{lll}
x_{0}(z)=-0.00233 z-2.972 \times 10^{-5} & \theta_{x}=0.1106^{\circ} & \theta_{x, \text { true }}=0.1088^{\circ} \\
y_{0}(z)=0.00196 z-5.815 \times 10^{-5} & \theta_{y}=0.1324^{\circ} & \theta_{y, \text { true }}=0.1316^{\circ}
\end{array}
$$

Finding the axis of FC1

- Run 3
- 100 A
- Flip mode
(2)

.
axis of FC1
 ,
,
\square

$-$
-

r erFlip mo

Try on FC1
 (Run 3, 100A, flip mode)

Try on FC1
 (Run 3, 100A, flip mode)

\rightarrow Residuals are much larger than expected - so what's going on...

Transverse vector field

\rightarrow Field vector, $\overrightarrow{B_{t}}=\left(B_{x, m}, B_{y, m}\right)$

- Points along vector
- Points behind vector

Correction?

At each z, look at $B_{\varphi, m}$. Should be 0 for all rotations of the mapper disc, but is not so.
Subtract the average $B_{\varphi, m}$ from each measurement...

Transverse vector field

\rightarrow Field vector, $\overrightarrow{B_{t}}=\left(B_{x, m}, B_{y, m}\right)$

- Points along vector
- Points behind vector

Now vectors point towards "the axis".
But: Is a correction for $B_{r, m}$ needed?

Try on FC1 (again)
 (Run 3, 100A, flip mode)

More 'wiggly' than model data

Try on FC1 (again)

(Run 3, 100A, flip mode)

\rightarrow Better! Can compare axes with and without correction to get an idea of overall effect...

FC1

Correction had largest effect on y-axis result, but still small.

FC2

"Run 3"

- 100 A
- Flip mode
- Flip mode
- With $B_{\varphi, m}$ correction
=
-

M

Reminder: All lines are in the mapper co-ordinate system.

FC2

(Run 3, 100A, flip mode)

Has more 'character' than FC1

FC2
(Run 3, 100A, flip mode)

SPECTROME SOLENOIDS Ode to awkward magnets
 | SPECTROM |
| :--- |
| SOLENOIDS |
| Ode to awkward magnets |

 \section*{SPECTROMETER
 \section*{SPECTROMETER

 -

 -}
}

—

The 'SS' Saga

- Q1: In the 4T 'flat field' region...
- Where is the axis of a uniform solenoid?
- Will exclude this region from fits
- The mapper carriage is different for the SS mapping
- Longer (~5m, rather than 3)
- More flex and wobble
- More difficult to align to the bore before measurements begin (?)
- Measurements taken slightly differently (a complete loop of the Hall probes is two "runs"
- Survey of the mapper movement during measurements for FC1 \& FC2 show $\sim 0.1 \mathrm{~mm}$ movement.
- Much worse for SS's... for example!

Beautiful survey plots from LBNL

The mapper's movement is fairly complex - still digesting!

$0<$

"Runs 21 \& 22"
"100\% solenoid mode"

- Excluding $1.7<z<3.4$ m region
- With $B_{\varphi, m}$ correction
- (First magnet mapped)

USS, fitting over full z-range

Non-uniform, E2 needs turning down (see DSS for 'tweaked' flat field) - Also see this in MAUS with 'default' currents.

USS, excluding $1.7<z<3.4$ m region

USS, excluding $1.7<z<3.4$ m region

Larger residuals than for FC1 \& FC2.
Still some oddities in transverse vector plots (see supporting material)

R

- "100\% flip mode"
- Excluding $2<z<3.8 \mathrm{~m}$ region
- With $B_{\varphi, m}$ correction
.

DSS, fitting over full z-range

Much flatter with tweaked currents.

DSS, excluding $2<z<3.8$ m region

DSS, excluding $2<z<3.8 \mathrm{~m}$ region

Residuals on par with FC2 (still worse than FC1)

Still more to learn (and still need error bars)

"Results"

Equations describing current (Feb 2015) best fit to magnetic axis in mapper co-ordinate system (units are m!)

FC1

x	$-0.001485 z+0.001312$
y	$-0.002235 z+0.00383$
FC2	
x	$0.002076 z-0.002563$
y	$-0.000835 z+0.001769$

DSS (Excluding $2<z<3.8 \mathrm{~m}$ region)

x	$-1.7656 \times 10^{-5} z+0.000179$
y	$0.000287 z-0.007454$
USS (Excluding $1.7<z<3.4$ m region)	
x	$-0.000446 z+0.000863$
y	$0.001057 z-0.004170$

To do:

- Investigate vector plots from SS's more thoroughly
- Correction to $B_{r, m}$ necessary?
- One Hall probe cube 'contains’ 3 independent Hall sensors
- Apply survey
- 'Swingy’ travel through SS’s needs help!
- Think really, really hard about the errors
- ... Then the remaining field map exercise!

