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Structure of the EMR Step I paper
1 Introduction

I Ionization Cooling, MICE
I Purpose of the EMR

2 Electron-Muon Ranger
I Structure of the detector

3 Performance in the MICE Beam
I TOF selection and particle tagging
I Correction for the energy loss in TOF2 and KL
I Useful variables for PID
I Efficiency of a simple test statistic
I Momentum reconstruction from the range

4 Conclusions

NB: This paper demonstrates the capability of the EMR (+ App. A)
NB’: Appendices at the end of the slides for additional information
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1. & 2. Electron-Muon Ranger
Pupose of the EMR in MICE:

Reject the muons that decayed
inside the cooling channel and
their decay products

Redundant measurements of the
trajectories and momenta

The EMR is fully active scintillator
tracker calorimeter

48 planes of 59 triangular
scintillator bars

Readout by multi-anode and
single-anode PMTs

→ Final version of these sections at
http://micewww.pp.rl.ac.uk/issues/1472
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3. Performance in the MICE beam

One month of data taking in the MICE beam at Step I

Array of beam settings (e±, π±) with momenta ranging from 250 to
550 MeV/c ”at target” (setting in the magic spreadsheet)

→ Rates and accumulated data are shown as a function of the setting
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3.1 TOF selection and particle tagging (+ App. B)
Only the tracks with one TOF
spacepoint are selected (single tracks)

For a given beam setting, we fit the
distribution of TOFs with a 3-peaks
Gaussian (→ µα , σα)

For each particle trigger, the probability
of belonging to each peak is computed
and a particle tag is associated to it

The momentum of muons and pions is
reconstructed from the TOF
measurement:

pα =
mαc√(
cTOF
∆z12

)2
− 1

(1)

Figure: TOFs of a positron
beam of 230 MeV/c @D2
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3.2 Energy loss before entering the EMR

After tagging, a particle goes through TOF2 and KL before the EMR:

Composition of TOF2:
I 2” (∼ 5cm) of PVT (Polyvinyl Toluene) scintillator bars

Composition of KL:
I 4 cm calorimeter made of Pb and PS scintillating fibres
I VPS/VPb ' 2
I On average ∼ 3X0 and ∼ 0.1λI
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Energy loss in TOF2

Characteristics of the energy loss:

X0 ' 42.6 cm in PVT

MIP particles loose ∼ 10 MeV/c
in TOF (muons and pions with
pz > 2mic)

Low energy muons and pions
(pz < mic) will experience higher
energy loss. At 120 MeV/c, a pion
looses 20 MeV/c on average

The electrons are all
ultra-relativistic (βγ > 100). Due
to the high X0, they are unlikely to
shower in TOF2 (0.1 X0)

→ For µ and π, the shift in energy is only
significant at low energies
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Energy loss in KL (1) (+ App. B)

Characteristics of the energy loss:

X0 ' 0.5 cm in Pb

MIP particles loose ∼ 20 MeV/c
in KL (muons and pions with
pz > 2mic)

Low energy muons and pions
(pz < mic) can potentially stop in
the detector if pµ < 100MeV/c or
pπ < 120MeV/c

The electrons are all
ultra-relativistic (βγ > 100) and
will shower in the lead of KL (3X0)

Pions can hadronize in KL and
loose substantially more energy on
occasions (0.1λI)
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Energy loss in KL (2)
Survival of muons and pions after KL:

In the 2010 PID detectors run,
TAG counters were placed behind
KL to see what comes out of it

The theoretical suspicions are
confirmed, muons and pions are
killed under a certain threshold

Electromagnetic showers:

Electrons radiate in KL and create
several secondary γ, e− and e+

e− and e+ come out with very low
momentum (∼ pz/23)

Photons go through the EMR with
low probability of interacting with
the scintillating material (hits rare)
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Electron event (shower in KL, no clear track)
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Muon event (∼ 250 MeV/c)
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Pion event (∼ 250 MeV/c)
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3.3 Useful variables to discriminate electrons

For each beam setting (i.e. momentum) and each event, we measure:

1 Plane density ρp

→ Measurement of the hit density in the active volume

2 Spread in terms of χ2 in the two projections

→ Track / Shower spread of a particle

3 Range R

→ Penetration of the particle in the EMR detector

The use of these variables as a combined test statistic will prove to be a
strong tool to reject electrons and tag real muons in the detector as we
will see in the following sections
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Plane Density ρp

The plane density is defined as the percentage of the planes that record a
signal on the path of the particle or its shower, i.e.

ρp =
number of planes hit

∆z
=
NX +NY

zX + zY
(2)

with ∆z the depth of the particle expressed in number of planes.

Electrons: 9
planes hit over
a span of 15,
ρp = 60%;

Muons: 14
planes hit over
a span of 14,
ρp = 100%.
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Muon vs electron: Density (normalized)
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Spread in terms of χ2/N in the two projections (+ App. C)

One way to express that angular spread of an electromagnetic shower is to
fit it with a line a evaluate its χ2 normalized to the amount of hits N:

χ2/N =
1

N

∑
i

(yi − (axi + b))2

σ2
i

(3)

For a given array of hits (xi, yi), the exact value of this parameter is
expressed in term of the spread σ2

y = E
[
(y − y)2

]
as:

χ2/N = σ2
y(1− ρ2) (4)

with ρ = Cov(x, y)/σxσy. This is exactly what we want as:

Electrons have a significant spread σy and the hits they produce are
weakly correlated ((1− ρ2)→ 1), so that χ2/N → σ2

y � 1

Muons have a small spread σy (centre of the detector) and are
strongly correlated (line, (1− ρ2)→ 0), so that χ2/N � 1
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χ2/N in the X and Y projections

Distribution of the electron and the muon χ2/N in the two projections:

The electrons don’t exhibit an obvious pattern in their distribution

The muons are concatenated around (0, 0) as we would expect

→ A natural choice of variable to test when it comes to a combination of
two similar statistic is their product χ2

X × χ2
Y

François Drielsma (UniGe) EMR Paper Draft February 10, 2015 17 / 35



3.4 First selection attempt

At first glance, the most efficient variable to reject the electrons at all
momenta is the plane density ρp. Even if it performs well on its own,
adding a cut on χ2

X × χ2
Y improves the rejection without reducing the

acceptance.

Hypothesis testing :

H0 is the null hypothesis, the particle X is a muon. H1 is the
alternative, i.e. X is an electron.

α = p(X ∈ w|H0) is the loss, the probability that X is tagged as an
electron, given that X is a muon (w the critical region)

β = p(X ∈ (W − w)|H1) is the contamination, the probability that
X is tagged as a muon, given that X is an electron (W the space)

→ We want to define w such that the power 1− β is maximized without
losing too much of the initial sample (given α)
→ The real contamination is in fact Reβ with Re the abundance of
electrons in the beam, i.e. Re = Ne/Nµ (= 11.7% in the test beam)
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Chi squared vs Density

We want to select a critical region wα
of the space W (ρP , χ

2
Xχ

2
Y ) for a given

loss α. We follow the curve 1 − α and
minimize for β, we get, for α = 1%:

ρp > .9

χ2
Xχ

2
Y < 0.75

This yields a contamination of:

→ β ' 1.4%

→ This value is independent of the
beam setting as it was obtained for
the whole electron sample.

→ It is achieved without the input of
any other detector

→ In the case of this test beam, the
purity reaches 1−Reβ = 99.84%.
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Rejection power at different momenta

Is this method efficient for every momenta?

→ The contamination fluctuates with the setting but there is no strong
correlation between the setting and β. The worst is reached for pz =
322 MeV/c @Q9 for which β = 6%.

→ The loss of muons is
kept around 1% for every
setting.

→ The highest momenta
experience huge losses
because the electron
peak and muon peak
merge and the muons
are incorrectly tagged.
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Problematic events

Electron events with high density ρP and low spread χ2
Xχ

2
Y :

Out of the 7608 electrons tested, only 101 of them make the cut

50% are very low range electrons → ρP ∼ 1, χ2
i � 1

The events with ∆z = 48 could be mistagged very high pz muons

The rest are electrons that didn’t shower in KL or for which the
photons of the shower didn’t produce secondary particles (random)

→ An appropriate cut on
the range could get rid of
the last few electrons. Un-
fortunately this cut would
need to be a function of
momentum, RC(pz), as
we certainly don’t want to
reject additional muons.
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3.5 Range R

The range R = ∆Z/(cos θX cos θY ) is defined as the distance the particles
travels through the EMR before it stops. It can be expressed in number of
planes or in mm (1 plane = 17mm).
→ For µ and π it corresponds beautifully to the range as their path is
more or less straight forward along the BL;
→ for e it gives us an idea of the range of the electromagnetic shower but
is much less precise as the angle of the linear fit is not obvious

Electrons: the
last hit is in plane
30, R ' 30;

Muons: the muon
stopped in plane
27, R ' 29.
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Electromagnetic shower range

We can’t infer the electron momentum from the TOF information as they
are all ultra-relativistic. Even if we could, the showering in KL is such that
there is no strong correlation between initial momentum and shower depth.
→ The whole electron sample must be rejected to prove efficiency
→ The range is not a strong way to reject electrons

Figure: The momentum is inferred at
Q9 from the beam setting
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Muon range in the EMR

Unlike the electrons, the muons don’t shower in KL. They loose energy in
the EMR until they stop or cross the whole detector before stopping.
A simple linear fit yields the formulas, for 150MeV/c < pz < 280MeV/c :

Rµ(pz) ' (0.29× pz − 32.13)planes , (5)

Rµ(pz) ' (0.49× pz − 54.62)cm . (6)

Uncertainty on the mean used here
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Resolution on the muon momentum

We can also inverse this relation to get an estimation of the momentum of
the muon as a function of the range measured in the EMR. The
uncertainty on the reconstructed momentum is about 10 MeV/c for
every range between 5 and 45 planes (NB: uncertainty on pz from TOF)
Inverting the relation yields, for 5 < Rµ < 45 :

pz(Rµ) ' ([3.5×Rµ + 110.8]± 10)MeV/c . (7)
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4. Conclusions

What is completed and will stay unchanged in the final EMR Step I paper:

Introduction, presentation of MICE and the role of the EMR

Technical description of the detector and its features

TOF analysis to extract the momentum between TOF1 and TOF2

→ Final version for this at http://micewww.pp.rl.ac.uk/issues/1472
What will be added or replaced in the paper:

Energy loss correction of the muon and pion impinging momentum
after going through TOF2 and KL

New variables to tag muons, reject electrons (density, spread, range)
→ New PID efficiency analysis

Contamination constrained down to 1.4% for 1% loss.
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Appendix A: Contamination in the beam

First of all, what is the composition of the pion beam as a function of its
position z along the beamline. If we assume the same acceptance for all
particles in the test beam, then we have:

dNπ

dt
= −λπNπ,

dNµ

dt
= +λπNπ − λµNµ,

dNe

dt
= +λµNµ (8)

which solves for Ne(t) in terms of
its fraction of the whole sample
N0:

Ne(t)

N0
= 1− λµ

λµ − λπ
e−λπt

+
λπ

λµ − λπ
e−λµt (9)
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What are the electrons that contaminate the muons sample? As the
particles are tagged by the TOFs, it comes from an overlap between the
muon and electron peaks. The normalized peaks overlap at:

tC(pz) =
µµ(pz)− µe
σe + σµ

(10)

with µµ the position of the muon peak (function of muon momentum),
µe ' 31.84 ns, σe ' 0.25 ns and σµ ' 0.5 ns. The electrons beyond this
point constitute contamination and the muons below, loss:

α(pz) = β(pz) = P (te > tC)

=
1√
(2π)

∫ +∞

tC(pz)
e−x

2/2dx

=
1

2
Erfc

(
tC(pz)√

2

)
(11)
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In our analysis, they are 3 main sources of contamination linked to TOF:

1 The electrons that come from TOF overlap (negligible at low pz)

→ NC
e (pz) = β(pz)

∫ zTOF1

0
dNe(z,pz)

dz dz ' 0.04 % for 500MeV/c @target

2 The muons the decay between TOF1 and TOF2 (still tagged as µ?)

→ The muon peak moves towards the electron peak as function of its
decay position z, a z close to TOF2 gives electrons in the muon peak.

→ NC
e (pz) =

∫ zTOF2

zTOF1

dNe(z,pz)
dz β(z, pz)dz ' 0.075 % for 500MeV/c

@target

3 The muons that decay after TOF2 (short distance ∼ 0.37 m)

→ All the decays beyond this point contaminate, i.e β(pz) = 1 :

→ NC
e (pz) =

∫ zEMR

zTOF2

dNe(z,pz)
dz dz ' 0.02 % for 280 Mev/c @target
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Appendix B: Uncertainty on the momentum measurement

The source of the momentum measurements in the test beam is
reconstructed (provided TOF PID) from the time of flight t ≡ TOF12:

|−→p | ≡ p =
mic√

( ctD )2 − 1
(12)

With uncertainty:

σp =
∂p

∂t

∣∣∣∣
t,D

σt ⊕
∂p

∂D

∣∣∣∣
t,D

σD

=
mic

3t

D2

[
(
ct

D
)2 − 1

]−3/2

σt

⊕ mic
3t2

D3

[
(
ct

D
)2 − 1

]−3/2

σD(13)

with σt ∼ 70 ps and σD ∼ 8 mm.
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The other main source of error on the reconstructed momentum at the
entrance of the EMR is the correction for the energy loss in KL. A
simplified model has been developed to simulate the spread in EL:

KL is made out of PS fibres threaded through
sheets of Pb (VPS/VPb ∼ 2)

We reduce to the smallest repeatable lattice
element and define the function:

∆x(PS)/∆x ≡ f(y0, θ) (14)

→ The proportion of PS the track goes through in this element.
→ Small angles are favoured (see data).
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Given the angular distribution (0± 0.13 radians) and a uniform
distribution in y0 (no favored initial position), we can simulate the EL.

→ Beautiful agreement between simulation and data

→ Offset of 15 MeV/c of the peak, energy loss in TOF2 !

→ For MIP particles, ∆pz ' (20± 5) Mev/c is a good approximation

Simulated p loss Real KL ADC product
In fine, for muons @200Mev/c (MIP particles), uncertainty of 2MeV/c
from 200Mev/c and 5MeV/c from 200Mev/c. It increases at low pz
because of KL EL and at high pz because of TOF.
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Appendix C: Linear fits of events in the EMR

The first step before fitting is to only keep the highest energy hits

→ Only perfectly efficient way of getting way of getting rid of crosstalk

→ The coordinates of the channel with the highest charge are saved into
the arrays (−→x ,−→y ), x along the beamline and y perpendicular to it

→ For given bar, its coordinates are given by its COM

BEFORE AFTER
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From χ2/N = 1
N

∑N
i=1(yi − (axi + b))2/σ2

i , provided that σi = σ0, ∀i:

χ2/N =
1

Nσ2
0

N∑
i=1

[y2
i − 2yi(axi + b) + (a2x2

i + 2abxi + b2)] (15)

To minimize it for a and b, we derive about these two parameters:

∂(χ2/N)

∂a
= 0 ⇐⇒ 1

N

N∑
i=1

[−2xiyi + 2ax2
i + 2bxi] = 0

⇐⇒ − < xy > +a < x2 > +b < x >= 0 (16)

∂(χ2/N)

∂b
= 0 ⇐⇒ 1

N

N∑
i=1

[−2yi + 2ax2
i + 2b] = 0

⇐⇒ − < y > +a < x > +b = 0 (17)
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Introducing b =< y > −a < x > into Eq. 16, we get:

− < xy > +a < x2 > + < x >< y > −a < x >2= 0 (18)

We know that the variance of x is σ2
x = E[(x− x)2] =< x2 > − < x >2

and the covariance of x and y is σ2
xy =< xy > − < x >< y > :

a = σ2
xy/σ

2
x and b =< y > −a < x > (19)

Finally, imputing these values into Eq. 15 with arbitrary σ0 = 1 :

χ2/N = σ2
y − 2aσ2

xy + a2σ2
x

= σ2
y − 2σ4

xy/σ
2
x + σ4

xy/σ
2
x

= σ2
y(1−

σ4
xy

σ2
xσ

2
y

)

= σ2
y(1− ρ2) (20)
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